Question
Mathematics Question on Coordinate Geometry
The vertices of a quadrilateral ABCD are A(6, – 2), B(9, 2), C(5, – 1) and D(2, – 5). Prove that ABCD is a rhombus, and not a square.
Step 1: Find the lengths of the sides using the distance formula: d=(x2−x1)2+(y2−y1)2. Side AB: AB=(9−6)2+(2−(−2))2=32+42=9+16=5. Side BC: BC=(5−9)2+(−1−2)2=(−4)2+(−3)2=16+9=5. Side CD: CD=(2−5)2+(−5−(−1))2=(−3)2+(−4)2=9+16=5. Side DA: DA=(6−2)2+(−2−(−5))2=42+32=16+9=5. All sides are equal, so ABCD is a rhombus. Step 2: Check diagonals to confirm it is not a square. Diagonal AC: AC=(5−6)2+(−1−(−2))2=(−1)2+12=1+1=2. Diagonal BD: BD=(2−9)2+(−5−2)2=(−7)2+(−7)2=49+49=98=72. Since the diagonals are not equal (AC=BD), ABCD is not a square. Correct Answer: ABCD is a rhombus, but not a square.
Solution
Step 1: Find the lengths of the sides using the distance formula: d=(x2−x1)2+(y2−y1)2. Side AB: AB=(9−6)2+(2−(−2))2=32+42=9+16=5. Side BC: BC=(5−9)2+(−1−2)2=(−4)2+(−3)2=16+9=5. Side CD: CD=(2−5)2+(−5−(−1))2=(−3)2+(−4)2=9+16=5. Side DA: DA=(6−2)2+(−2−(−5))2=42+32=16+9=5. All sides are equal, so ABCD is a rhombus. Step 2: Check diagonals to confirm it is not a square. Diagonal AC: AC=(5−6)2+(−1−(−2))2=(−1)2+12=1+1=2. Diagonal BD: BD=(2−9)2+(−5−2)2=(−7)2+(−7)2=49+49=98=72. Since the diagonals are not equal (AC=BD), ABCD is not a square. Correct Answer: ABCD is a rhombus, but not a square.