Solveeit Logo

Question

Physics Question on Motion in a plane

The velocity vector of the motion described by the position vector of a particle, r=(2ti^+t2j^)\vec{r}=\left(2 t \hat{i}+t^{2} \hat{j}\right) is given by

A

v=(2i^+2tj^)\vec{v} = (2\hat{i}+2t\,\hat{j})

B

v=(2ti^+2tj^)\vec{v} = (2t\,\hat{i}+2t\,\hat{j})

C

v=(ti^+t2j^)\vec{v} = (t\,\hat{i}+t^2\,\hat{j})

D

v=(2i+t2j^)\vec{v} = (2i+t^2\,\hat{j})

Answer

v=(2i^+2tj^)\vec{v} = (2\hat{i}+2t\,\hat{j})

Explanation

Solution

Given r=2ti^+t2j^r=2 t \hat{i}+t^{2} \hat{j}
Velocity vector v=drdtv=\frac{d r}{d t} and using
ddxxn=nxn1\frac{d}{d x} x^{n}=n x^{n-1}
We have, drdt=2i^+2tj^\frac{d r}{d t}=2 \hat{i}+2 t \hat{j}