Solveeit Logo

Question

Physics Question on Dimensional Analysis

The velocity vv (in cm/scm / s ) of a particle is given in terms of time tt (in seconds) by the equation, v=at+bt+cv=a t+\frac{b}{t+c} The dimensions of a,ba, b and cc are :

A

a- [L2][L^{2}] b- [T][T] c- [LT2][LT^{2}]

B

a- [LT2][LT^{2}] b- [LT][LT] c- [L][L]

C

a -[LT2][LT^{-2}] b- [L][L] c- [T][T]

D

a -[L][L] b -[LT][LT] c -[T2][T^{2}]

Answer

a -[LT2][LT^{-2}] b- [L][L] c- [T][T]

Explanation

Solution

v=at+bt+cv =a t+\frac{b}{t+c}
[at]=[v]=[LT1][a t] =[v]=\left[ LT ^{-1}\right]
[a]=[LT1][T]=[LT2]\therefore [a] =\frac{\left[ LT ^{-1}\right]}{[ T ]}=\left[ LT ^{-2}\right]
Dimensions of c=[t]=[T]c=[t]=[ T ]
(we can add quantities of same dimensions only).
[bt+c]=[v]=[LT1]{\left[\frac{b}{t+c}\right]=[v]=\left[ LT ^{-1}\right]}
[b]=[LT1][T]=[L]{[b]=\left[L T^{-1}\right][T]=[L]}