Solveeit Logo

Question

Question: The velocity-time ($v-t$) graph of a body is shown. For the intervals OC and CB, the ratio of the di...

The velocity-time (vtv-t) graph of a body is shown. For the intervals OC and CB, the ratio of the distances covered is x:yx:y. Find x+yx+y.

Answer

4

Explanation

Solution

Solution:

  1. Let the coordinates be:
    O = (0, 0), A = (tat_a, vav_a) with vav_a = h, C = (tat_a, 0) and B = (tbt_b, 0).

  2. From the angle at O:
    tan 30° = vav_a/tat_a = 1/√3 ⟹ vav_a = tat_a/√3 ⟹ tat_a = √3 · vav_a.

  3. From the angle at B on segment AB:
    tan 60° = vav_a/(tbt_btat_a) = √3 ⟹ tbt_btat_a = vav_a/√3.

  4. Distance covered in OC (from 0 to tat_a):
    Area of triangle = ½ · tat_a · vav_a.

  5. Distance covered in CB (from tat_a to tbt_b):
    Area of triangle = ½ · (tbt_btat_a) · vav_a.

  6. Ratio of distances = (½ · tat_a · vav_a) : (½ · (tbt_btat_a) · vav_a) = tat_a : (tbt_btat_a).
    Substitute tat_a = √3 · vav_a and tbt_btat_a = vav_a/√3:
    Ratio = (√3 · vav_a) : (vav_a/√3) = √3 : (1/√3) = 3:1, i.e., x : y = 3 : 1.

  7. Thus, x + y = 3 + 1 = 4.