Solveeit Logo

Question

Question: The velocity-time graph of a particle in one-dimensional motion is shown in the figure. Which of the...

The velocity-time graph of a particle in one-dimensional motion is shown in the figure. Which of the following formulae is correct for describing the motion of the particle over the time interval t1\mathrm { t } _ { 1 } to 2_ { 2 } ?

A

x(t2)=x(t1)+v(t1)(t2t1)+(12)a(t2t1)2x \left( t _ { 2 } \right) = x \left( t _ { 1 } \right) + v \left( t _ { 1 } \right) \left( t _ { 2 } - t _ { 1 } \right) + \left( \frac { 1 } { 2 } \right) a \left( t _ { 2 } - t _ { 1 } \right) ^ { 2 }

B

v(t2)=v(t1)+a(t2t1)\mathrm { v } \left( \mathrm { t } _ { 2 } \right) = \mathrm { v } \left( \mathrm { t } _ { 1 } \right) + \mathrm { a } \left( \mathrm { t } _ { 2 } - \mathrm { t } _ { 1 } \right)

C

vaverage =(x(t2)+x(t1))(t2t1)\mathrm { v } _ { \text {average } } = \frac { \left( \mathrm { x } \left( \mathrm { t } _ { 2 } \right) + \mathrm { x } \left( \mathrm { t } _ { 1 } \right) \right) } { \left( \mathrm { t } _ { 2 } - \mathrm { t } _ { 1 } \right) }

D

aaverage =(v(t2)v(t1))(t2t1)\mathrm { a } _ { \text {average } } = \frac { \left( \mathrm { v } \left( \mathrm { t } _ { 2 } \right) - \mathrm { v } \left( \mathrm { t } _ { 1 } \right) \right) } { \left( \mathrm { t } _ { 2 } - \mathrm { t } _ { 1 } \right) }

Answer

aaverage =(v(t2)v(t1))(t2t1)\mathrm { a } _ { \text {average } } = \frac { \left( \mathrm { v } \left( \mathrm { t } _ { 2 } \right) - \mathrm { v } \left( \mathrm { t } _ { 1 } \right) \right) } { \left( \mathrm { t } _ { 2 } - \mathrm { t } _ { 1 } \right) }

Explanation

Solution

In the given interval the slope of v-t graph (i.e. accelerations) neither constant nor uniform . Therefore relations (1), (2) and (3) are incorrect but (4) is correct.