Solveeit Logo

Question

Question: The velocity of water waves may depend on their wavelength λ, the density of water ρ and the acceler...

The velocity of water waves may depend on their wavelength λ, the density of water ρ and the acceleration due to gravity g. The method of dimensional analysis gives the relation between these quantities as : (where K is a dimensionless constant)

A

v2=Kλ1g1ρ1v^{2} = K\lambda^{- 1}g^{- 1}\rho^{- 1}

B

v2 = K λ g

C

v2 = K λ g ρ

D

v2 = K λ3 g–1ρ–1

Answer

v2 = K λ g

Explanation

Solution

vλaρbgcv \propto \lambda^{a}\rho^{b}g^{c}

[M0 L1 T -1] = [M0 L1 T0]a [M1 L-3 T0]b [M0 L1 T -2]c\lbrack M^{0}\text{ }\text{L}^{1}\text{ T}\text{ }^{\text{-1}}\rbrack\ = \ \lbrack M^{0}\text{ }\text{L}^{1}\text{ }\text{T}^{0}\rbrack^{a}\ \lbrack M^{1}\text{ }\text{L}^{\text{-3}}\text{ }\text{T}^{0}\rbrack^{b}\ \lbrack M^{0}\text{ }\text{L}^{1}\text{ T}\text{ }^{\text{-2}}\rbrack^{c} [M0L1T1]=MbLa3b+cT2C\left[ M ^ { 0 } L ^ { 1 } T ^ { - 1 } \right] = M ^ { b } L ^ { a - 3 b + c } T ^ { - 2 C } ∴ b = 0 a = 1/2

a – 3b + c = 1 ⇒ b = 0

– 2c = – 1 c = ½

vλ1/2ρ0g1/2v \propto \lambda^{1/2}\rho^{0}g^{1/2}

or v2 = K λ gv^{2}\ = \text{ K }\lambda\ gwhere K is constant.