Solveeit Logo

Question

Physics Question on speed and velocity

The velocity of an object moving in a straight line path is given as a function of time by v=6t3t2v = 6t - 3t^2. where vv is in ms1,tms^{-1} , t is in ss. The average velocity of the object between t=0t = 0 and t=2st = 2s is

A

00

B

3  ms13 \; ms^{-1}

C

2  ms1 2 \; ms^{-1}

D

4  ms14 \; ms^{-1}

Answer

2  ms1 2 \; ms^{-1}

Explanation

Solution

Given, velocity, v=6t3t2v=6 t-3 t^{2}
As we know that,
v=dxdtv=\frac{d x}{d t}
Here, xx is the displacement of the particle.
Now, dx=vdtd x=v d t
Integrate on the both sides, limit t=0t=0 to t=2t=2, we get
x=02vdt=02(6t3t2)dt\therefore x=\int\limits_{0}^{2} v d t=\int\limits_{0}^{2}\left(6 t-3 t^{2}\right) d t
=[6t22]02[3t33]02=[3t2]02[t3]02=\left[\frac{6 t^{2}}{2}\right]_{0}^{2}-\left[\frac{3 t^{3}}{3}\right]_{0}^{2}=\left[3 t^{2}\right]_{0}^{2}-\left[t^{3}\right]_{0}^{2}
=[3(2)23(0)2][(2)3(0)2]=\left[3(2)^{2}-3(0)^{2}\right]-\left[(2)^{3}-(0)^{2}\right]
=[120][80]=128=4m=[12-0]-[8-0]=12-8=4 \,m
Average velocity, vavg = Total displacement  Total time taken v_{\text {avg }}=\frac{\text { Total displacement }}{\text { Total time taken }} =42=2m/s=\frac{4}{2}=2 m / s
Hence, the average velocity of the object between
t=0t=0 to t=2st=2 s is 2m/s2 m / s