Solveeit Logo

Question

Physics Question on Motion in a straight line

The velocity of a particle is v=v0+gt+ft2v = v_0 + gt + ft^2. If its position is x=0x = 0 at t=0t = 0, then its displacement after unit time (t=1)(t = 1) is

A

v0+2g+3fv_0 + 2g + 3f

B

v0+g/2+f/3v_0 + g/2 + f/3

C

v0+g+fv_0 + g + f

D

v0+g/2+fv_0 + g/2 + f

Answer

v0+g/2+f/3v_0 + g/2 + f/3

Explanation

Solution

0xdx=01(V0+gt+ft2)dt\int\limits^{x}_{{0}}dx=\int\limits^{1}_{{0}}(V_0+gt+ft^2)dt x=v0+g(12)+f(13)x=v_{0}+g\left(\frac{1}{2}\right)+f \left(\frac{1}{3}\right)