Solveeit Logo

Question

Question: The velocity of a particle is \(\overset{\rightarrow}{v}\) = 6\(\widehat{i}\) + 2\(\widehat{j}\) – 2...

The velocity of a particle is v\overset{\rightarrow}{v} = 6i^\widehat{i} + 2j^\widehat{j} – 2k^\widehat{k}. The component of the velocity of a particle parallel to vector a\overset{\rightarrow}{a}= i^\widehat{i} + j^\widehat{j} + k^\widehat{k}in vector form is-

A

6i^\widehat{i} + 2j^\widehat{j} + 2k^\widehat{k}

B

2i^\widehat{i}+ 2j^\widehat{j} + 2k^\widehat{k}

C

i^\widehat{i}+j^\widehat{j} + k^\widehat{k}

D

6i^\widehat{i} + 2j^\widehat{j} – 2k^\widehat{k}

Answer

2i^\widehat{i}+ 2j^\widehat{j} + 2k^\widehat{k}

Explanation

Solution

Component of v\overset{\rightarrow}{v}along a\overset{\rightarrow}{a}= (v.a^)(\overset{\rightarrow}{v}.\widehat{a})

= (6i^6\widehat{i} + 2j^2\widehat{j}2k^2\widehat{k}). (i^+j^+k^)3\frac{\left( \widehat{i} + \widehat{j} + \widehat{k} \right)}{\sqrt{3}}

= 6+223\frac{6 + 2 - 2}{\sqrt{3}} = 63\frac{6}{\sqrt{3}} = 23\sqrt{3}

In vector form = (23\sqrt{3}) a^\widehat{a}

= 2 3\sqrt { 3 } (i^+j^+k^)3\frac{\left( \widehat{i} + \widehat{j} + \widehat{k} \right)}{\sqrt{3}}

= 2 (i^+j^+k^)\left( \widehat{i} + \widehat{j} + \widehat{k} \right)