Solveeit Logo

Question

Physics Question on Kinetic Energy

The velocity of a particle at which the kinetic energy is equal to its rest energy is

A

(3c2)\bigg( \frac{3c}{2}\bigg)

B

3c23 \frac{c}{\sqrt{2}}

C

(3c)122\frac{(3c)^{\frac{1}{2}}}{2}

D

c32\frac{c\sqrt{3}}{2}

Answer

c32\frac{c\sqrt{3}}{2}

Explanation

Solution

The relativistic kinetic energy of a particle of rest mass m0m_{0} is given by K=(mm0)c2\quad K=\left(m-m_{0}\right) c^{2}
m=m01(v2/c2)m=\frac{m_{0}}{\sqrt{1-\left(v^{2} / c^{2}\right)}}, where mm is the mass of
the particle moving with velocity vv.
K=[m01(v2/c2)m0]c2z\therefore K=\left[\frac{m_{0}}{\sqrt{1-\left(v^{2} / c^{2}\right)}}-m_{0}\right] c^{2} z
According to problem,
kinetic energy == rest energy
[m01(v2/c2)m0]c2=m0c2\therefore\left[\frac{m_{0}}{\sqrt{1-\left(v^{2} / c^{2}\right)}}-m_{0}\right] c^{2}=m_{0} c^{2}
or m0c21(v2/c2)=2m0c2\frac{m_{0} c^{2}}{\sqrt{1-\left(v^{2} / c^{2}\right)}}=2 m_{0} c^{2}
or 11(v2/c2)=4\frac{1}{1-\left(v^{2} / c^{2}\right)}=4
or 4v2/c2=34 v^{2} / c^{2}=3
v=3c2\therefore v=\frac{\sqrt{3} c}{2}