Solveeit Logo

Question

Question: The velocity of a body at the end of \(4\;{\rm{seconds}}\) is \(26\;{\rm{m}}{{\rm{s}}^{ - 1}}\), a...

The velocity of a body at the end of 4  seconds4\;{\rm{seconds}} is
26  ms126\;{\rm{m}}{{\rm{s}}^{ - 1}}, at the end of 12  seconds12\;{\rm{seconds}} is 58  ms158\;{\rm{m}}{{\rm{s}}^{ - 1}} and at the end of 22  seconds22\;{\rm{seconds}} is
98  ms198\;{\rm{m}}{{\rm{s}}^{ - 1}}. The body is moving with:-
(A) Uniform acceleration
(B) Uniform speed
(C) Uniform velocity
(D) Uniform displacement

Explanation

Solution

In this question, the body's velocity is given to us at a different time interval, so we will use the equation of motion at a different time interval. The various equations will give us information about the acceleration, speed, velocity, and displacement of the body.

Complete step by step answer:
It is given to us that velocity of the body at the end of 4  second4\;{\rm{second}} is 26  ms126\;{\rm{m}}{{\rm{s}}^{ - 1}}, at the end of 12  seconds12\;{\rm{seconds}} is 58  ms158\;{\rm{m}}{{\rm{s}}^{ - 1}} and at the end of 22  second22\;{\rm{second}} is 98  ms198\;{\rm{m}}{{\rm{s}}^{ - 1}}. So, write the equation of motion for the condition of the body after 4  seconds4\;{\rm{seconds}}.
v=u+at\Rightarrow v = u + at
Here vv is the velocity of the body after 4  seconds4\;{\rm{seconds}} and uu is the initial velocity of the body, aa is the body's acceleration in the first condition, and tt is the time.
Substitute the values in the above equation.
Therefore, we get
26  ms1=0+a(4  s)\Rightarrow 26\;{\rm{m}}{{\rm{s}}^{ - 1}} = 0 + a\left( {4\;{\rm{s}}} \right) …… (1)
Write the equation of motion for the second condition when body’s velocity is 58  ms1\Rightarrow 58\;{\rm{m}}{{\rm{s}}^{ - 1}} at the end of 12  seconds12\;{\rm{seconds}}. So,
v=u+at\Rightarrow v = u + at
Here we will substitute the values in the above equation that are given in the second condition. So,
58  ms1=u+a(12  s)\Rightarrow 58\;{\rm{m}}{{\rm{s}}^{ - 1}} = u + a\left( {12\;{\rm{s}}} \right) …… (2)
Write the equation of motion for the third condition when body’s velocity is 98  ms1\Rightarrow 98\;{\rm{m}}{{\rm{s}}^{ - 1}} at the end of 22  seconds22\;{\rm{seconds}}. So,
v=u+at\Rightarrow v = u + at
Here we will substitute the values in the above equation that are given in the third condition. So,
58  ms1=u+a(12  s)\Rightarrow 58\;{\rm{m}}{{\rm{s}}^{ - 1}} = u + a\left( {12\;{\rm{s}}} \right) …… (3)
Use equations (1) and (2) to determine the acceleration of the body.
Therefore, we get
26  ms1=(58  ms1a(12  s))+a(4  s) a(12  s)a(4  s)=58  ms126  ms1 a(8  s)=32    ms1 a=4  ms2 \Rightarrow 26\;{\rm{m}}{{\rm{s}}^{ - 1}} = \left( {58\;{\rm{m}}{{\rm{s}}^{ - 1}} - a\left( {12\;{\rm{s}}} \right)} \right) + a\left( {4\;{\rm{s}}} \right)\\\ \Rightarrow a\left( {12\;{\rm{s}}} \right) - a\left( {4\;{\rm{s}}} \right) = 58\;{\rm{m}}{{\rm{s}}^{ - 1}} - 26\;{\rm{m}}{{\rm{s}}^{ - 1}}\\\ \Rightarrow a\left( {8\;{\rm{s}}} \right) = 32\;\;{\rm{m}}{{\rm{s}}^{ - 1}}\\\ \Rightarrow a = 4\;{\rm{m}}{{\rm{s}}^{ - 2}}
We use equations (2) and (3) to determine the body's acceleration at different times.
58  ms1=(98  ms1a(22  s))+a(12  s) a(22  s)a(12  s)=98  ms156  ms1 a(10  s)=40    ms1 a=4  ms2 \Rightarrow 58\;{\rm{m}}{{\rm{s}}^{ - 1}} = \left( {98\;{\rm{m}}{{\rm{s}}^{ - 1}} - a\left( {22\;{\rm{s}}} \right)} \right) + a\left( {{\rm{12}}\;{\rm{s}}} \right)\\\ \Rightarrow a\left( {22\;{\rm{s}}} \right) - a\left( {12\;{\rm{s}}} \right) = 98\;{\rm{m}}{{\rm{s}}^{ - 1}} - 56\;{\rm{m}}{{\rm{s}}^{ - 1}}\\\ \Rightarrow a\left( {10\;{\rm{s}}} \right) = 40\;\;{\rm{m}}{{\rm{s}}^{ - 1}}\\\ \Rightarrow a = 4\;{\rm{m}}{{\rm{s}}^{ - 2}}
Therefore, the acceleration values are the same at two different times, so the body's acceleration is uniform, and option (A) is correct.

Note: we used the first equation of motion in the solution because information about the displacement is not given in the question. The question only gives information about velocity and time. The second and third equation of motion consists of displacement terms, so it's become difficult for us to determine the correct answer.