Solveeit Logo

Question

Question: The velocities of three particles of masses 20g, 30g and 50 g are \(10\overrightarrow{i},10\overrigh...

The velocities of three particles of masses 20g, 30g and 50 g are 10i,10j,and10k10\overrightarrow{i},10\overrightarrow{j},\text{and}10\overrightarrow{k} respectively. The velocity of the centre of mass of the three particles is

A

2i+3j+5k2\overrightarrow{i} + 3\overrightarrow{j} + 5\overrightarrow{k}

B

10(i+j+k)10(\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k})

C

20i+30j+5k20\overrightarrow{i} + 30\overrightarrow{j} + 5\overrightarrow{k}

D

2i+30j+50k2\overrightarrow{i} + 30\overrightarrow{j} + 50\overrightarrow{k}

Answer

2i+3j+5k2\overrightarrow{i} + 3\overrightarrow{j} + 5\overrightarrow{k}

Explanation

Solution

Velocity of centre of mass vcm=m1v1+m2v2+m3v3m1+m2+m3=20×10i^+30×10j^+50×10k^100=2i^+3j^+5k^v_{cm} = \frac{m_{1}v_{1} + m_{2}v_{2} + m_{3}v_{3}}{m_{1} + m_{2} + m_{3}} = \frac{20 \times 10\widehat{i} + 30 \times 10\widehat{j} + 50 \times 10\widehat{k}}{100} = 2\widehat{i} + 3\widehat{j} + 5\widehat{k}.