Solveeit Logo

Question

Question: The velocities of three particles of masses 20 g, 30 g and 50 g are\(10\overset{\land}{i},10\overset...

The velocities of three particles of masses 20 g, 30 g and 50 g are10i,10j10\overset{\land}{i},10\overset{\land}{j} , and 10k10\overset{\land}{k}respectively. The velocity of the centre of mass of the three particle is :

A

2i+3j+5k2\overset{\land}{i} + 3\overset{\land}{j} + 5\overset{\land}{k}

B

10(i+j)10(\overset{\land}{i} + \overset{\land}{j})

C

20i+30j+5k20\overset{\land}{i} + 30\overset{\land}{j} + 5\overset{\land}{k}

D

2i+30j+50k2\overset{\land}{i} + 30\overset{\land}{j} + 50\overset{\land}{k}

Answer

2i+3j+5k2\overset{\land}{i} + 3\overset{\land}{j} + 5\overset{\land}{k}

Explanation

Solution

vcm=m1v1+m2v2+m3v3m1+m2+m3{\overset{\rightarrow}{v}}_{cm} = \frac{m_{1}{\overset{\rightarrow}{v}}_{1} + m_{2}{\overset{\rightarrow}{v}}_{2} + m_{3}{\overset{\rightarrow}{v}}_{3}}{m_{1} + m_{2} + m_{3}}

=20×10i^+30×10j^+50×10k^100= \frac{20 \times 10\widehat{i} + 30 \times 10\widehat{j} + 50 \times 10\widehat{k}}{100}

vcm=2i^+3j^+5k^v_{cm} = 2\widehat{i} + 3\widehat{j} + 5\widehat{k} 7.