Solveeit Logo

Question

Physics Question on simple harmonic motion

The velocities of a particle in SHMSHM at positions X1X_1 and X2X_2 are V1V_1 and V2V_2 respectively. Its time period will be

A

2π(v12v22)/(x22x12)2\pi\,\sqrt{\left(v^{2}_{1}-v^{2}_{2}\right)/\left(x^{2}_{2}-x^{2}_{1}\right)}

B

2π(x12+x22)/(v22v12)2\pi\,\sqrt{\left(x^{2}_{1}+x^{2}_{2}\right)/\left(v^{2}_{2}-v^{2}_{1}\right)}

C

2π(x22x12)/(v12v22)2\pi\,\sqrt{\left(x^{2}_{2}-x^{2}_{1}\right)/\left(v^{2}_{1}-v^{2}_{2}\right)}

D

2π(x22+x12)/(v12+v22)2\pi\,\sqrt{\left(x^{2}_{2}+x^{2}_{1}\right)/\left(v^{2}_{1}+v^{2}_{2}\right)}

Answer

2π(x22x12)/(v12v22)2\pi\,\sqrt{\left(x^{2}_{2}-x^{2}_{1}\right)/\left(v^{2}_{1}-v^{2}_{2}\right)}

Explanation

Solution

The velocity of SHM v=ωa2x2v = \omega \sqrt{a^{2} -x^{2}} According to question v1=ωa2x12...(i)v_{1} = \omega \sqrt{a^{2} -x_{1}^{2}} \,\,\, ...\left(i\right) v2=ωa2x22...(ii)v_{2} = \omega\sqrt{a^{2} -x_{2}^{2}} \,\,\, ...\left(ii\right) Dividing E (i)(i) by E (ii)(ii) v1v2=a2x12a2x22\frac{v_{1}}{v_{2}} = \sqrt{\frac{a^{2}-x_{1}^{2}}{a^{2} - x_{2}^{2}}} On both squaring v12v22=a2x12a2x22\frac{v_{1}^{2}}{v_{2}^{2}} = \frac{a^{2} -x_{1}^{2}}{a^{2}-x_{2}^{2}} a2=v12x22v22x12v12v22a^{2} =\frac{ v_{1}^{2}x_{2}^{2} - v^{2}_{2} x_{1}^{2}}{v_{1}^{2} - v_{2}^{2}} Put in E (i)(i) v1=ωa2x12v_{1} = \omega\sqrt{a^{2}-x_{1}^{2}} v1=2πTv12x22v22x12v12v22x12v_{1} = \frac{2\pi}{T}\sqrt{\frac{v_{1}^{2}x_{2}^{2} -v_{2}^{2}x_{1}^{2}}{v_{1}^{2} - v_{2}^{2}} -x_{1}^{2}} T=2πx22x12v12v22T = 2\pi\sqrt{\frac{x_{2}^{2} -x_{1}^{2}}{v_{1}^{2} - v_{2}^{2}}}