Solveeit Logo

Question

Question: The vectors \(\overset{\rightarrow}{AB} = 3\mathbf{i} + 4\mathbf{k},\) and \(\overset{\rightarrow}{A...

The vectors AB=3i+4k,\overset{\rightarrow}{AB} = 3\mathbf{i} + 4\mathbf{k}, and AC=5i2j+4k\overset{\rightarrow}{AC} = 5\mathbf{i} - 2\mathbf{j} + 4\mathbf{k} are the sides of a triangle ABC. The length of the median through A is

A

18\sqrt{18}

B

72\sqrt{72}

C

33\sqrt{33}

D

288\sqrt{288}

Answer

33\sqrt{33}

Explanation

Solution

P.V. of AD=(3+5)i+(02)j+(4+4)k2=4ij+4k\overset{\rightarrow}{AD} = \frac{(3 + 5)i + (0 - 2)j + (4 + 4)k}{2} = 4\mathbf{i} - \mathbf{j} + 4\mathbf{k}

AD=16+16+1=33|\overset{\rightarrow}{AD}| = \sqrt{16 + 16 + 1} = \sqrt{33}.