Solveeit Logo

Question

Question: The vectors \[\overrightarrow{a}\] and \[\overrightarrow{b}\] are not perpendicular and \[\overright...

The vectors a\overrightarrow{a} and b\overrightarrow{b} are not perpendicular and c\overrightarrow{c} , d\overrightarrow{d} are two vectors satisfying b×c=b×d\overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{d} and a.d=0\overrightarrow{a}.\overrightarrow{d}=0 . The vector d\overrightarrow{d} is equal to
A.bc(b.c)(a.b)\overrightarrow{b}-\dfrac{\overrightarrow{c}(\overrightarrow{b}.\overrightarrow{c})}{(\overrightarrow{a}.\overrightarrow{b})}

B.c+b(a.c)(a.b)\overrightarrow{c}+\dfrac{\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})}{(\overrightarrow{a}.\overrightarrow{b})}
C.b+c(b.c)(a.b)\overrightarrow{b}+\dfrac{\overrightarrow{c}(\overrightarrow{b}.\overrightarrow{c})}{(\overrightarrow{a}.\overrightarrow{b})}
D.cb(a.c)(a.b)\overrightarrow{c}-\dfrac{\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})}{(\overrightarrow{a}.\overrightarrow{b})}

Explanation

Solution

Hint: We have four vectors a\overrightarrow{a} , b\overrightarrow{b} , c\overrightarrow{c} , and d\overrightarrow{d} . We have two conditions b×c=b×db\times c=b\times d and a.d=0a.d=0 . Cross multiply by a\overrightarrow{a} in the LHS and RHS of b×c=b×d\overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{d} . We know the formula,
a×(b×c)=b(a.c)c(a.b)\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{c})=\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})-\overrightarrow{c}(\overrightarrow{a}.\overrightarrow{b}) . Now, using this formula, solve the equation, a×(b×c)=a×(b×d)\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{c})=\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{d}) . Then, use the condition a.d=0\overrightarrow{a}.\overrightarrow{d}=0 , as given in the question. Now, divide by (a.b)-(\overrightarrow{a}.\overrightarrow{b}) in LHS and RHS after expanding a×(b×c)=a×(b×d)\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{c})=\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{d}) using the formula a×(b×c)=b(a.c)c(a.b)\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{c})=\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})-\overrightarrow{c}(\overrightarrow{a}.\overrightarrow{b}) . Solve them further.

Complete step-by-step answer:
According to the question, it is given that we have four vectors a\overrightarrow{a} , b\overrightarrow{b} , c\overrightarrow{c} , and d\overrightarrow{d} . The vectors a\overrightarrow{a} and b\overrightarrow{b} are not perpendicular. We also have two conditions given in the question.
b×c=b×d\overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{d} ……………………(1)
a.d=0\overrightarrow{a}.\overrightarrow{d}=0 ………………………….(2)
Now, multiplying by a\overrightarrow{a} in equation (1), we get
a×(b×c)=a×(b×d)\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{c})=\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{d}) ………………………………..(3)
We need to simplify equation (3) and we also know the formula, a×(b×c)=b(a.c)c(a.b)\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{c})=\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})-\overrightarrow{c}(\overrightarrow{a}.\overrightarrow{b}) .
Using this formula, simplifying equation (3)
a×(b×c)=a×(b×d)\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{c})=\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{d})
b(a.c)c(a.b)=b(a.d)d(a.b)\Rightarrow \overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})-\overrightarrow{c}(\overrightarrow{a}.\overrightarrow{b})=\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{d})-\overrightarrow{d}(\overrightarrow{a}.\overrightarrow{b}) ………………………..(4)
Now, dividing by (a.b)-(\overrightarrow{a}.\overrightarrow{b}) in equation (4), we get
b(a.c)(a.b)c(a.b)(a.b)=b(a.d)(a.b)d(a.b)(a.b)\Rightarrow \dfrac{\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})}{-(\overrightarrow{a}.\overrightarrow{b})}-\dfrac{\overrightarrow{c}(\overrightarrow{a}.\overrightarrow{b})}{-(\overrightarrow{a}.\overrightarrow{b})}=\dfrac{\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{d})}{-(\overrightarrow{a}.\overrightarrow{b})}-\dfrac{\overrightarrow{d}(\overrightarrow{a}.\overrightarrow{b})}{-(\overrightarrow{a}.\overrightarrow{b})}
b(a.c)(a.b)+c=b(a.d)(a.b)+d\Rightarrow -\dfrac{\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})}{(\overrightarrow{a}.\overrightarrow{b})}+\overrightarrow{c}=\dfrac{\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{d})}{-(\overrightarrow{a}.\overrightarrow{b})}+\overrightarrow{d} …………………………(5)
From equation (2), we have a.d=0\overrightarrow{a}.\overrightarrow{d}=0 .
Now, putting a.d=0\overrightarrow{a}.\overrightarrow{d}=0 in equation (5), we get
b(a.c)(a.b)+c=b(0)(a.b)+d\Rightarrow -\dfrac{\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})}{(\overrightarrow{a}.\overrightarrow{b})}+\overrightarrow{c}=\dfrac{\overrightarrow{b}(0)}{-(\overrightarrow{a}.\overrightarrow{b})}+\overrightarrow{d}

& \Rightarrow \overrightarrow{c}-\dfrac{\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})}{(\overrightarrow{a}.\overrightarrow{b})}=0+\overrightarrow{d} \\\ & \Rightarrow \overrightarrow{c}-\dfrac{\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})}{(\overrightarrow{a}.\overrightarrow{b})}=\overrightarrow{d} \\\ \end{aligned}$$ So, $$\overrightarrow{d}=\overrightarrow{c}-\dfrac{\overrightarrow{b}(\overrightarrow{a}.\overrightarrow{c})}{(\overrightarrow{a}.\overrightarrow{b})}$$ . Hence, the option (D) is the correct option. Note: In this question, one may think to do cross-multiplication by $$\overrightarrow{b}$$ in the LHS and RHS of the equation $$\overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{d}$$ . If we do so, then we will not be able to use the condition $$\overrightarrow{a}.\overrightarrow{d}=0$$ . $$\overrightarrow{b}\times (\overrightarrow{b}\times \overrightarrow{c})=\overrightarrow{b}\times (\overrightarrow{b}\times \overrightarrow{d})$$ $$\Rightarrow \overrightarrow{b}(\overrightarrow{b}.\overrightarrow{c})-\overrightarrow{c}(\overrightarrow{b}.\overrightarrow{b})=\overrightarrow{b}(\overrightarrow{b}.\overrightarrow{d})-\overrightarrow{d}(\overrightarrow{b}.\overrightarrow{b})$$ Also, in the question conditions for $$\overrightarrow{b}.\overrightarrow{d}$$ and $$\overrightarrow{b}.\overrightarrow{c}$$is not given. So, we can’t approach this question by this method.