Solveeit Logo

Question

Question: The vectors \(\mathbf{c},\mathbf{a} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}\) and \(\mathbf{b} = \...

The vectors c,a=xi+yj+zk\mathbf{c},\mathbf{a} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} and b=j\mathbf{b} = \mathbf{j} are such that a,c, b form a right handed system, then c is

A

zixkz\mathbf{i} - x\mathbf{k}

B

0

C

yjy\mathbf{j}

D

zi+xk- z\mathbf{i} + x\mathbf{k}

Answer

zixkz\mathbf{i} - x\mathbf{k}

Explanation

Solution

Since a,b,c\mathbf{a},\mathbf{b},\mathbf{c} form a right handed system

c=b×a=j×(xi+yj+zk)\therefore\mathbf{c} = \mathbf{b} \times \mathbf{a} = \mathbf{j} \times (x\mathbf{i} + y\mathbf{j} + z\mathbf{k})

=x(j×i)+z(j×k)=xk+zi=zixk= x(\mathbf{j} \times \mathbf{i}) + z(\mathbf{j} \times \mathbf{k}) = - x\mathbf{k} + z\mathbf{i} = z\mathbf{i} - x\mathbf{k}.