Solveeit Logo

Question

Question: The vectors \(\mathbf { a } = 2 \lambda ^ { 2 } \mathbf { i } + 4 \lambda \mathbf { j } + \mathbf { ...

The vectors a=2λ2i+4λj+k\mathbf { a } = 2 \lambda ^ { 2 } \mathbf { i } + 4 \lambda \mathbf { j } + \mathbf { k } and b=7i2j+λk\mathbf { b } = 7 \mathbf { i } - 2 \mathbf { j } + \lambda \mathbf { k } make an obtuse angle whereas the angle between b and k is acute and less than π/6\pi / 6, then domain of λ\lambda is

A

0<λ<120 < \lambda < \frac { 1 } { 2 }

B

λ>159\lambda > \sqrt { 159 }

C

12<λ<0- \frac { 1 } { 2 } < \lambda < 0

D

Null set

Answer

Null set

Explanation

Solution

As angle between a\mathbf { a } and b\mathbf { b } is obtuse,

̃ (2λ2i+4λj+k)(7i2j+λk)<0\left( 2 \lambda ^ { 2 } \mathbf { i } + 4 \lambda \mathbf { j } + \mathbf { k } \right) \cdot ( 7 \mathbf { i } - 2 \mathbf { j } + \lambda \mathbf { k } ) < 0 ̃ 14λ28λ+λ<014 \lambda ^ { 2 } - 8 \lambda + \lambda < 0

̃ λ(2λ1)<0\lambda ( 2 \lambda - 1 ) < 0 ̃ 0<λ<120 < \lambda < \frac { 1 } { 2 } ......(i)

Angle between b\mathbf { b } and k\mathbf { k } is acute and less than π6\frac { \pi } { 6 }.

̃ λ=53+λ21cosθ\lambda = \sqrt { 53 + \lambda ^ { 2 } } \cdot 1 \cdot \cos \theta

̃ cosθ=λ53+λ2\cos \theta = \frac { \lambda } { \sqrt { 53 + \lambda ^ { 2 } } }

θ<π6\theta < \frac { \pi } { 6 } ̃ cosθ>cosπ6\cos \theta > \cos \frac { \pi } { 6 } ̃ cosθ>32\cos \theta > \frac { \sqrt { 3 } } { 2 }̃λ53+λ2>32\frac { \lambda } { \sqrt { 53 + \lambda ^ { 2 } } } > \frac { \sqrt { 3 } } { 2 }

̃ 4λ23(53+λ2)>04 \lambda ^ { 2 } - 3 \left( 53 + \lambda ^ { 2 } \right) > 0 ̃ λ2>159\lambda ^ { 2 } > 159 ̃ λ<159\lambda < - \sqrt { 159 }

or λ>159\lambda > \sqrt { 159 } ……(ii)

From (i) and (ii), λ=ϕ\lambda = \phi. \therefore Domain of λ\lambda is null set