Solveeit Logo

Question

Question: The vectors \(\hat{i}+2\hat{j}+3\hat{k},\lambda \hat{i}+4\hat{j}+7\hat{k}\) and \(-3\hat{i}-2\hat{j}...

The vectors i^+2j^+3k^,λi^+4j^+7k^\hat{i}+2\hat{j}+3\hat{k},\lambda \hat{i}+4\hat{j}+7\hat{k} and 3i^2j^5k^-3\hat{i}-2\hat{j}-5\hat{k} are coplanar, if λ\lambda is equal to?
(a) 6
(b) 5
(c) 4
(d) 3

Explanation

Solution

Compare the given three vectors with the general form given as a1i^+b1j^+c1k^,a2i^+b2j^+c2k^{{a}_{1}}\hat{i}+{{b}_{1}}\hat{j}+{{c}_{1}}\hat{k},{{a}_{2}}\hat{i}+{{b}_{2}}\hat{j}+{{c}_{2}}\hat{k} and a3i^+b3j^+c3k^{{a}_{3}}\hat{i}+{{b}_{3}}\hat{j}+{{c}_{3}}\hat{k} respectively. Now, for the condition of coplanar vectors use the determinant formula given as a1b1c1 a2b2c2 a3b3c3 =0\left| \begin{matrix} {{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\\ {{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\\ {{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\\ \end{matrix} \right|=0, substitute the values of the coefficients considered and expand it to form an equation in λ\lambda as a variable. Solve for the value of λ\lambda to get the answer.

Complete step by step answer:
Here we have been provided with three vectors i^+2j^+3k^,λi^+4j^+7k^\hat{i}+2\hat{j}+3\hat{k},\lambda \hat{i}+4\hat{j}+7\hat{k} and 3i^2j^5k^-3\hat{i}-2\hat{j}-5\hat{k} which are said to be coplanar. We have been asked to find the value of λ\lambda for the condition to be satisfied.
Now, comparing the given vectors with their general forms given as a1i^+b1j^+c1k^,a2i^+b2j^+c2k^{{a}_{1}}\hat{i}+{{b}_{1}}\hat{j}+{{c}_{1}}\hat{k},{{a}_{2}}\hat{i}+{{b}_{2}}\hat{j}+{{c}_{2}}\hat{k} and a3i^+b3j^+c3k^{{a}_{3}}\hat{i}+{{b}_{3}}\hat{j}+{{c}_{3}}\hat{k} respectively we have the following values of coefficients of the unit vectors i^,j^\hat{i},\hat{j} and k^\hat{k}.
(a1,b1,c1)=(1,2,3),(a2,b2,c2)=(λ,4,7),(a3,b3,c3)=(3,2,5)\Rightarrow \left( {{a}_{1}},{{b}_{1}},{{c}_{1}} \right)=\left( 1,2,3 \right),\left( {{a}_{2}},{{b}_{2}},{{c}_{2}} \right)=\left( \lambda ,4,7 \right),\left( {{a}_{3}},{{b}_{3}},{{c}_{3}} \right)=\left( -3,-2,-5 \right)
The condition for three vectors to be coplanar is given by the determinant formula given as a1b1c1 a2b2c2 a3b3c3 =0\left| \begin{matrix} {{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\\ {{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\\ {{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\\ \end{matrix} \right|=0, so substituting the values of coefficients we get,
123 λ47 325 =0\Rightarrow \left| \begin{matrix} 1 & 2 & 3 \\\ \lambda & 4 & 7 \\\ -3 & -2 & -5 \\\ \end{matrix} \right|=0
Performing the elementary row operation R1R1+R3{{R}_{1}}\to {{R}_{1}}+{{R}_{3}} we get,
202 λ47 325 =0\Rightarrow \left| \begin{matrix} -2 & 0 & -2 \\\ \lambda & 4 & 7 \\\ -3 & -2 & -5 \\\ \end{matrix} \right|=0
Now, performing the elementary column operation given as C3C3C1{{C}_{3}}\to {{C}_{3}}-{{C}_{1}} we get,
200 λ47λ 322 =0\Rightarrow \left| \begin{matrix} -2 & 0 & 0 \\\ \lambda & 4 & 7-\lambda \\\ -3 & -2 & -2 \\\ \end{matrix} \right|=0
Expanding the determinant along the first row we get,
2[4×(2)(2)×(7λ)]0[λ×(2)(3)×(7λ)]+0[λ×(2)(3)×4]=0 2[8+142λ]=0 62λ=0 \begin{aligned} & \Rightarrow -2\left[ 4\times \left( -2 \right)-\left( -2 \right)\times \left( 7-\lambda \right) \right]-0\left[ \lambda \times \left( -2 \right)-\left( -3 \right)\times \left( 7-\lambda \right) \right]+0\left[ \lambda \times \left( -2 \right)-\left( -3 \right)\times 4 \right]=0 \\\ & \Rightarrow -2\left[ -8+14-2\lambda \right]=0 \\\ & \Rightarrow 6-2\lambda =0 \\\ \end{aligned}
Solving the above linear equation for the value of λ\lambda we get,
2λ=6 λ=3 \begin{aligned} & \Rightarrow 2\lambda =6 \\\ & \therefore \lambda =3 \\\ \end{aligned}

So, the correct answer is “Option d”.

Note: Note that the above formula of the determinant arises from the fact that ‘if three vectors are coplanar then the dot product of one vector with the cross product of other two vectors must be zero’, in other words the scalar triple product of three vectors a\overrightarrow{a}, b\overrightarrow{b} and c\overrightarrow{c} given by the relation (a×b).c=0\left( \overrightarrow{a}\times \overrightarrow{b} \right).\overrightarrow{c}=0. Here the dot (.) symbol is the dot product and the cross (×)\left( \times \right) symbol is the cross product. The above formula we have applied is nothing but the simplified form of the mentioned condition.