Solveeit Logo

Question

Question: The vectors from origin to the points A and B are \(\vec { B } = 2 \hat { i } + \hat { j } - 2 \hat ...

The vectors from origin to the points A and B are B=2i^+j^2k^\vec { B } = 2 \hat { i } + \hat { j } - 2 \hat { k } respectively. The area of the triangle OAB be

A

5217\frac { 5 } { 2 } \sqrt { 17 }sq.unit

B

2517\frac { 2 } { 5 } \sqrt { 17 } sq.unit

C

3517\frac { 3 } { 5 } \sqrt { 17 } sq.unit

D

5317\frac { 5 } { 3 } \sqrt { 17 } sq.unit

Answer

5217\frac { 5 } { 2 } \sqrt { 17 }sq.unit

Explanation

Solution

Given OA=a=3i^6j^+2k^\overrightarrow { O A } = \vec { a } = 3 \hat { i } - 6 \hat { j } + 2 \hat { k } and

OB=b=2i^+j^2k^\overrightarrow { O B } = \vec { b } = 2 \hat { i } + \hat { j } - 2 \hat { k }

=(122)i^+(4+6)j^+(3+12)k^= ( 12 - 2 ) \hat { i } + ( 4 + 6 ) \hat { j } + ( 3 + 12 ) \hat { k }

=517= 5 \sqrt { 17 }

Area of sq.unit.