Solveeit Logo

Question

Question: The vectors from origin to the points A and B are \(\overset{\rightarrow}{A} = 3\widehat{i}–6\wideha...

The vectors from origin to the points A and B are A=3i^6j^+2k^\overset{\rightarrow}{A} = 3\widehat{i}–6\widehat{j} + 2\widehat{k} and B=2i^+j^2k^\overset{\rightarrow}{B} = 2\widehat{i} + \widehat{j}–2\widehat{k}respectively. The area of the triangle OAB will be –

A

5217\frac{5}{2}\sqrt{17} sq. unit

B

2517\frac{2}{5}\sqrt{17} sq. unit

C

3517\frac{3}{5}\sqrt{17} sq. unit

D

5317\frac{5}{3}\sqrt{17} sq. unit

Answer

5217\frac{5}{2}\sqrt{17} sq. unit

Explanation

Solution

Area of D = 12OA×OB\frac{1}{2}\left| \overset{\rightarrow}{OA} \times \overset{\rightarrow}{OB} \right|

= 12i^j^k^362212\frac{1}{2}\left| \begin{matrix} \widehat{i} & \widehat{j} & \widehat{k} \\ 3 & –6 & 2 \\ 2 & 1 & - 2 \end{matrix} \right|

= 12(10i^+10j^+15k^)=12425\frac{1}{2}\left| (10\widehat{i} + 10\widehat{j} + 15\widehat{k}) \right| = \frac{1}{2}\sqrt{425} = 5217\frac{5}{2}\sqrt{17}