Solveeit Logo

Question

Question: The vectors \[a,b{\text{ and }}c\] are equal in length and taken pairwise, they make equal angles. I...

The vectors a,b and ca,b{\text{ and }}c are equal in length and taken pairwise, they make equal angles. If a=i+j,b=j+k and ca = i + j,b = j + k{\text{ and }}c makes an obtuse angle with the base vector iiand cc is equal to
A. i+ki + k
B. i+4jk - i + 4j - k
C. 13i+43j13k - \dfrac{1}{3}i + \dfrac{4}{3}j - \dfrac{1}{3}k
D. 13i43j+13k\dfrac{1}{3}i - \dfrac{4}{3}j + \dfrac{1}{3}k

Explanation

Solution

Hint: First of all, find the length of vector cc.Then find the angles made by the vectors a,b and ca,b{\text{ and }}c taken pair wise to get the equations in terms of components of vector cc. So, use this concept to reach the solution of the given problem.

Complete step-by-step solution -
The length of the vector r=xi+yj+zkr = xi + yj + zk is given by r=x2+y2+z2\left| r \right| = \sqrt {{x^2} + {y^2} + {z^2}} .
The length of vector a=i+ja = i + j is a=(1)2+(1)2=2\left| a \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2}} = \sqrt 2
The length of vector b=j+kb = j + k is b=(1)2+(1)2=2\left| b \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2}} = \sqrt 2
Since three vectors have equal lengths c=2\left| c \right| = \sqrt 2
Let vector c=c1i+c2j+c3kc = {c_1}i + {c_2}j + {c_3}k
Since vector ccmakes an obtuse angle with ii, then the dot product between them is less than zero i.e., c.i=c1<0c.i = {c_1} < 0
We know that the angle between the vectors x and yx{\text{ and }}y is given by θ=cos1x.yxy\theta = {\cos ^{ - 1}}\dfrac{{x.y}}{{\left| x \right|\left| y \right|}}
Also given that the angle between the vectors are equal. So, we have
cos1a.bab=cos1a.cac=cos1b.cbc{\cos ^{ - 1}}\dfrac{{a.b}}{{\left| a \right|\left| b \right|}} = {\cos ^{ - 1}}\dfrac{{a.c}}{{\left| a \right|\left| c \right|}} = {\cos ^{ - 1}}\dfrac{{b.c}}{{\left| b \right|\left| c \right|}}
Now consider

a.b=(i+j).(j+k)=j2=1 a.c=(i+j).(c1i+c2j+c3k)=c1+c2 b.c=(j+k).(c1i+c2j+c3k)=c2+c3  \Rightarrow a.b = \left( {i + j} \right).\left( {j + k} \right) = {j^2} = 1 \\\ \Rightarrow a.c = \left( {i + j} \right).\left( {{c_1}i + {c_2}j + {c_3}k} \right) = {c_1} + {c_2} \\\ \Rightarrow b.c = \left( {j + k} \right).\left( {{c_1}i + {c_2}j + {c_3}k} \right) = {c_2} + {c_3} \\\

Taking cos1a.bab=cos1a.cac{\cos ^{ - 1}}\dfrac{{a.b}}{{\left| a \right|\left| b \right|}} = {\cos ^{ - 1}}\dfrac{{a.c}}{{\left| a \right|\left| c \right|}}, we have

cos1122=cos1c1+c222 122=c1+c222 12=c1+c22 c1+c2=1 c2=1c1..................................................(1)  \Rightarrow {\cos ^{ - 1}}\dfrac{1}{{\sqrt 2 \sqrt 2 }} = {\cos ^{ - 1}}\dfrac{{{c_1} + {c_2}}}{{\sqrt 2 \sqrt 2 }} \\\ \Rightarrow \dfrac{1}{{\sqrt 2 \sqrt 2 }} = \dfrac{{{c_1} + {c_2}}}{{\sqrt 2 \sqrt 2 }} \\\ \Rightarrow \dfrac{1}{2} = \dfrac{{{c_1} + {c_2}}}{2} \\\ \Rightarrow {c_1} + {c_2} = 1 \\\ \therefore {c_2} = 1 - {c_1}..................................................\left( 1 \right) \\\

Taking cos1a.bab=cos1b.cbc{\cos ^{ - 1}}\dfrac{{a.b}}{{\left| a \right|\left| b \right|}} = {\cos ^{ - 1}}\dfrac{{b.c}}{{\left| b \right|\left| c \right|}}

cos1122=cos1c2+c322 122=c2+c322 12=c2+c32 c2+c3=1  \Rightarrow {\cos ^{ - 1}}\dfrac{1}{{\sqrt 2 \sqrt 2 }} = {\cos ^{ - 1}}\dfrac{{{c_2} + {c_3}}}{{\sqrt 2 \sqrt 2 }} \\\ \Rightarrow \dfrac{1}{{\sqrt 2 \sqrt 2 }} = \dfrac{{{c_2} + {c_3}}}{{\sqrt 2 \sqrt 2 }} \\\ \Rightarrow \dfrac{1}{2} = \dfrac{{{c_2} + {c_3}}}{2} \\\ \Rightarrow {c_2} + {c_3} = 1 \\\

From equation (1) we have

1c1+c3=1 c3=c1.................................(2)  \Rightarrow 1 - {c_1} + {c_3} = 1 \\\ \therefore {c_3} = {c_1}.................................\left( 2 \right) \\\

Since c=2\left| c \right| = \sqrt 2
(c1)2+(c2)2+(c3)2=2\Rightarrow \sqrt {{{\left( {{c_1}} \right)}^2} + {{\left( {{c_2}} \right)}^2} + {{\left( {{c_3}} \right)}^2}} = \sqrt 2
Squaring on both sides we get
(c1)2+(c2)2+(c3)2=2\Rightarrow {\left( {{c_1}} \right)^2} + {\left( {{c_2}} \right)^2} + {\left( {{c_3}} \right)^2} = 2
From equation (1) and (2) we het

(c1)2+(1c1)2+(c1)2=2 c12+12c1+c12+c12=2 3c122c1=21=1 3c123c1+c11=0  \Rightarrow {\left( {{c_1}} \right)^2} + {\left( {1 - {c_1}} \right)^2} + {\left( {{c_1}} \right)^2} = 2 \\\ \Rightarrow {c_1}^2 + 1 - 2{c_1} + {c_1}^2 + {c_1}^2 = 2 \\\ \Rightarrow 3{c_1}^2 - 2{c_1} = 2 - 1 = 1 \\\ \Rightarrow 3{c_1}^2 - 3{c_1} + {c_1} - 1 = 0 \\\

Taking the common terms, we have

3c1(c11)+1(c11)=0 (3c1+1)(c11)=0 c1=1,13  \Rightarrow 3{c_1}\left( {{c_1} - 1} \right) + 1\left( {{c_1} - 1} \right) = 0 \\\ \Rightarrow \left( {3{c_1} + 1} \right)\left( {{c_1} - 1} \right) = 0 \\\ \therefore {c_1} = 1, - \dfrac{1}{3} \\\

Since c1<0{c_1} < 0
The value of c1{c_1} is 13 - \dfrac{1}{3}
From equation (1) we have

c2=1(13)=1+13 c2=43  \Rightarrow {c_2} = 1 - \left( { - \dfrac{1}{3}} \right) = 1 + \dfrac{1}{3} \\\ \therefore {c_2} = \dfrac{4}{3} \\\

From equation (2) we have

c3=c1=13 c3=13  \Rightarrow {c_3} = {c_1} = - \dfrac{1}{3} \\\ \therefore {c_3} = - \dfrac{1}{3} \\\

Hence vector c=c1i+c2j+c3kc = {c_1}i + {c_2}j + {c_3}k is c=13i+43j13kc = - \dfrac{1}{3}i + \dfrac{4}{3}j - \dfrac{1}{3}k
Thus, the correct option is C. 13i+43j13k - \dfrac{1}{3}i + \dfrac{4}{3}j - \dfrac{1}{3}k

Note: The length of the vector r=xi+yj+zkr = xi + yj + zk is given by r=x2+y2+z2\left| r \right| = \sqrt {{x^2} + {y^2} + {z^2}} . The angle between the vectors x and yx{\text{ and }}y is given by θ=cos1x.yxy\theta = {\cos ^{ - 1}}\dfrac{{x.y}}{{\left| x \right|\left| y \right|}}. The angle made by the two vectors is said to be an obtuse angle when their dot product is less than zero.