Question
Question: The vector \[\widehat{i}\times \left( \overrightarrow{a}\times \widehat{i} \right)+\widehat{j}\times...
The vector i×(a×i)+j×(a×j)+k×(a×k) is equal to
(a) 0
(b) a
(c) 2a
(d) None of these
Solution
First of all, assume, a=xi+yj+zk. Now use the formula for vector triple product that is a×(b×c),(a.c)b−(a.b)c and also use i.i=j.j=k.k=1;i.j=j.k=k.i=0 to find the value of the given expression. Also separate the given expression and then solve individually each pat to avoid any confusion.
Complete step-by-step solution -
In this question, we have to find the value of the vector
i×(a×i)+j×(a×j)+k×(a×k)
First of all, let us consider the expression given in the question.
E=i×(a×i)+j×(a×j)+k×(a×k)
Let us take the value of a=xi+yj+zk.
Let us assume,
Note: In these types of questions, whenever the value of a certain vector is not given, we should always consider it as a general vector that is xi+yj+zk. Also, note that the vector triple product of 3 vectors is not associative that is, (a×b)×c=a×(b×c) because
& \left( \overrightarrow{a}\times \overrightarrow{b} \right)\times \overrightarrow{c}=\left( \overrightarrow{a}.\overrightarrow{c} \right)\overrightarrow{b}-\left( \overrightarrow{b}.\overrightarrow{c} \right)\overrightarrow{a} \\\ & \overrightarrow{a}\times \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left( \overrightarrow{a}.\overrightarrow{c} \right)\overrightarrow{b}-\left( \overrightarrow{a}.\overrightarrow{b} \right)\overrightarrow{c} \\\ \end{aligned}$$ So, it is advisable to apply the formula carefully to avoid any mistakes.