Solveeit Logo

Question

Mathematics Question on Vector Algebra

The vector a=i^+2j^+k^\vec{a}=-\hat{i}+2 \hat{j}+\hat{k} is rotated through a right angle, passing through the y-axis in its way and the resulting vector is b\vec{b}. Then the projection of 3a+2b3 \vec{a}+\sqrt{2} \vec{b} on c=5i^+4j^+3k^\vec{c}=5 \hat{i}+4 \hat{j}+3 \hat{k} is :

A

323 \sqrt{2}

B

1

C

232 \sqrt{3}

D

6\sqrt{6}

Answer

323 \sqrt{2}

Explanation

Solution

b=λa×(a×j^​)
⇒b=λ(−2i^−2j^​+2k^)
∣b∣=∣a∣∴6​=12​∣λ∣⇒λ=±2​1​
(λ=2​1​ rejected ∵b makes acute angle with y axis )
b=−2​(−i^−j^​+k^)
(3a+2b)cc=32\frac{(3a+2b)-c}{|c|}=3\sqrt2