Solveeit Logo

Question

Question: The vector that must be added to the vector \(3 \hat { i } + 6 \hat { j } - 7 \hat { k }\) so that t...

The vector that must be added to the vector 3i^+6j^7k^3 \hat { i } + 6 \hat { j } - 7 \hat { k } so that the resultant vector is a unit vector along the y­­-axis is

A

4i^+2j^+5k^4 \hat { i } + 2 \hat { j } + 5 \hat { k }

B

4i^2j^+5k^- 4 \hat { i } - 2 \hat { j } + 5 \hat { k }

C

3i^+4j^+5k^3 \hat { i } + 4 \hat { j } + 5 \hat { k }

D

Null vector

Answer

4i^2j^+5k^- 4 \hat { i } - 2 \hat { j } + 5 \hat { k }

Explanation

Solution

Unit vector along y axis =j^= \hat { j } so the required vector =j^[(i^3j^+2k^)+(3i^+6j^7k^)]= \hat { j } - [ ( \hat { i } - 3 \hat { j } + 2 \hat { k } ) + ( 3 \hat { i } + 6 \hat { j } - 7 \hat { k } ) ] =4i^2j^+5k^= - 4 \hat { i } - 2 \hat { j } + 5 \hat { k }