Solveeit Logo

Question

Question: The vector sum of two forces is perpendicular to their vector differences. In that case, the forces ...

The vector sum of two forces is perpendicular to their vector differences. In that case, the forces
(A) Cannot be predicted
(B) Are equal to each other
(C) Are equal to each other in magnitude
(D) Are not equal to each other in magnitude

Explanation

Solution

When two vectors are perpendicular to each other, their scalar product (dot product) vanishes. Use this to find a relation between the two forces.

Complete step by step solution
Let the two forces be F1\overrightarrow {{F_1}} and F2\overrightarrow {{F_2}} .
The vector sum of the two forces will beFsum=F1+F2{\overrightarrow F _{sum}} = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} .
The vector difference of the two forces will beFdifference=F1F2{\overrightarrow F _{difference}} = \overrightarrow {{F_1}} - \overrightarrow {{F_2}} .
In the question, we are given that the vector sum of the two forces and their vector difference are perpendicular to each other. This implies that their scalar product or their dot product, must vanish.
(Fsum)(Fdifference)=0\Rightarrow \left( {{{\overrightarrow F }_{sum}}} \right) \cdot \left( {{{\overrightarrow F }_{difference}}} \right) = 0
Substituting the values of Fsum{\overrightarrow F _{sum}}and Fdifference{\overrightarrow F _{difference}}in the above equation yields,
(F1+F2)(F1F2)=0\Rightarrow \left( {{{\overrightarrow F }_1} + {{\overrightarrow F }_2}} \right) \cdot \left( {{{\overrightarrow F }_1} - {{\overrightarrow F }_2}} \right) = 0
Now, we will use distributive law of dot product and open the brackets in the above equation,

F1(F1F2)+F2(F1F2)=0 F1.F1F1F2+F2F1F2F2=0  \Rightarrow {\overrightarrow F _1} \cdot \left( {{{\overrightarrow F }_1} - {{\overrightarrow F }_2}} \right) + {\overrightarrow F _2} \cdot \left( {{{\overrightarrow F }_1} - {{\overrightarrow F }_2}} \right) = 0 \\\ \Rightarrow {\overrightarrow F _{1.}} \cdot {\overrightarrow F _1} - {\overrightarrow F _1} \cdot {\overrightarrow F _2} + {\overrightarrow F _2} \cdot {\overrightarrow F _1} - {\overrightarrow F _2} \cdot {\overrightarrow F _2} = 0 \\\

We know that the order of multiplication does not matter in a dot product, i.e.F2.F1=F1.F2{\overrightarrow F _2}.{\overrightarrow F _1} = {\overrightarrow F _1}.{\overrightarrow F _2}, substituting this in above equation,

F1.F1F1F2+F1F2F2F2=0 F1.F1+(F1F2+F1F2)F2F2=0 F1.F1+(0)F2F2=0 F1.F1=F2F2  \Rightarrow {\overrightarrow F _{1.}} \cdot {\overrightarrow F _1} - {\overrightarrow F _1} \cdot {\overrightarrow F _2} + {\overrightarrow F _1} \cdot {\overrightarrow F _2} - {\overrightarrow F _2} \cdot {\overrightarrow F _2} = 0 \\\ \Rightarrow {\overrightarrow F _{1.}} \cdot {\overrightarrow F _1} + ( - {\overrightarrow F _1} \cdot {\overrightarrow F _2} + {\overrightarrow F _1} \cdot {\overrightarrow F _2}) - {\overrightarrow F _2} \cdot {\overrightarrow F _2} = 0 \\\ \Rightarrow {\overrightarrow F _{1.}} \cdot {\overrightarrow F _1} + (0) - {\overrightarrow F _2} \cdot {\overrightarrow F _2} = 0 \\\ \Rightarrow {\overrightarrow F _{1.}} \cdot {\overrightarrow F _1} = {\overrightarrow F _2} \cdot {\overrightarrow F _2} \\\

Now we can substitute F1F1{\overrightarrow F _1} \cdot {\overrightarrow F _1}as F12{\left| {{{\overrightarrow F }_1}} \right|^2}and F2F2{\overrightarrow F _2} \cdot {\overrightarrow F _2}as F22{\left| {{{\overrightarrow F }_2}} \right|^2}in the above equation,

F12=F22 F1=F2  \Rightarrow {\left| {{{\overrightarrow F }_1}} \right|^2} = {\left| {{{\overrightarrow F }_2}} \right|^2} \\\ \Rightarrow \left| {{{\overrightarrow F }_1}} \right| = \left| {{{\overrightarrow F }_2}} \right| \\\

Therefore, the magnitude of the two forces, F1{\overrightarrow F _1}and F2{\overrightarrow F _2}are coming out to be equal.

Option (C) is correct.

Note: We have used that the scalar product of two mutually perpendicular vectors is zero. This can be understood from the definition of scalar product. The scalar product (also called as dot product) of two vectors A\overrightarrow A and B\overrightarrow B is given by: AB=ABcosθ\left| {\overrightarrow A \cdot \overrightarrow B } \right| = \left| {\overrightarrow A } \right|\left| {\overrightarrow B } \right|\cos \theta where, θ\theta is the angle between vectors A\overrightarrow A and B\overrightarrow B . If the vectors A\overrightarrow A and B\overrightarrow B are mutually perpendicular, the angle θ\theta between them will be 9090^\circ .
AB=ABcos90 AB=AB(0) AB=0  \Rightarrow \left| {\overrightarrow A \cdot \overrightarrow B } \right| = \left| {\overrightarrow A } \right|\left| {\overrightarrow B } \right|\cos 90^\circ \\\ \Rightarrow \left| {\overrightarrow A \cdot \overrightarrow B } \right| = \left| {\overrightarrow A } \right|\left| {\overrightarrow B } \right|(0) \\\ \Rightarrow \left| {\overrightarrow A \cdot \overrightarrow B } \right| = 0 \\\
Therefore, the dot product of two mutually perpendicular vectors is always zero.