Solveeit Logo

Question

Mathematics Question on Vector Algebra

The vector(s) which is/are coplanar with vectors i^+j^+2k^\widehat{i} + \widehat{j}+2\widehat{k} and i^+2j^+k^,\widehat{i} + 2\widehat{j}+\widehat{k}, are perpendicular to the vector i^+j^+k^\widehat{i} + \widehat{j}+\widehat{k} is / are

A

j^k^ \widehat{j}-\widehat{k}

B

i^+j^ -\widehat{i}+\widehat{j}

C

i^j^ \widehat{i}-\widehat{j}

D

j^+k^ -\widehat{j}+\widehat{k}

Answer

j^+k^ -\widehat{j}+\widehat{k}

Explanation

Solution

Let a=i^+j^+2k^,\overrightarrow {a} =\widehat{i} + \widehat{j}+2\widehat{k}, b=i^+2j^+k^,\overrightarrow {b}=\widehat{i} + 2\widehat{j}+\widehat{k},
and c=i^+j^+k^\overrightarrow {c}=\widehat{i} + \widehat{j}+\widehat{k}
\therefore A vector coplanar a\overrightarrow {a} and b\overrightarrow {b} and perpendicular to c\overrightarrow {c}
=λ(a×b)=c=λ(a.c)v(b.c)a\, \, \, \, \, \, \, \, =\lambda \, (\overrightarrow {a} \times \overrightarrow {b}) =\overrightarrow {c} =\lambda \\{(\overrightarrow {a} . \overrightarrow {c})\overrightarrow {v}-(\overrightarrow {b} . \overrightarrow {c})\overrightarrow {a}\\}
=λ(1+1+4)(i^+2j^+k^)(1+2+1)(i^+j^+2k^)\, \, \, \, \, \, \, \, =\lambda \\{(1+1+4)\, (\widehat{i} + 2\widehat{j}+\widehat{k})-(1+2+1) \, (\widehat{i} + \widehat{j}+2\widehat{k})\\}
=λ6i^+12j^+6k^6i^+6j^+12k^\, \, \, \, \, \, \, \, =\lambda \\{6\widehat{i} + 12\widehat{j}+6\widehat{k} - \, 6\widehat{i} + 6\widehat{j}+12\widehat{k}\\}
=λ6j^+6k^=6λ+j^k^\, \, \, \, \, \, \, \, =\lambda \\{ 6\widehat{j}+6\widehat{k} \\} = \, 6 \lambda + \\{\widehat{j} -\widehat{k}\\}
For λ=16\lambda =\frac{1}{6} \Rightarrow Option (a) is correct.
and for λ=16\lambda =-\frac{1}{6} \Rightarrow Option (d) is correct.