Solveeit Logo

Question

Question: The vector(s) which are coplanar with vectors \[\mathop i\limits^ \wedge + \mathop j\limits^ \wedge ...

The vector(s) which are coplanar with vectors i+j+2k\mathop i\limits^ \wedge + \mathop j\limits^ \wedge + 2\mathop k\limits^ \wedge and i+2j+k\mathop i\limits^ \wedge + 2\mathop j\limits^ \wedge + \mathop k\limits^ \wedge , are perpendicular to the vector i+j+k\mathop i\limits^ \wedge + \mathop j\limits^ \wedge + \mathop k\limits^ \wedge are:
A jk\mathop j\limits^ \wedge - \mathop k\limits^ \wedge
B i+j- \mathop i\limits^ \wedge + \mathop j\limits^ \wedge
C ij\mathop i\limits^ \wedge - \mathop j\limits^ \wedge
D j+k- \mathop j\limits^ \wedge + \mathop k\limits^ \wedge

Explanation

Solution

Coplanar vectors are the vectors which lie on the same plane, in a three-dimensional space. These are vectors which are parallel to the same plane. We can always find in a plane any two random vectors, which are coplanar, hence we can find by solving for the vectors which are coplanar with respect to the perpendicular vector.

Complete step-by-step solution:
Let us write the given vectors i.e.,
i+j+2k\mathop i\limits^ \wedge + \mathop j\limits^ \wedge + 2\mathop k\limits^ \wedge and i+2j+k\mathop i\limits^ \wedge + 2\mathop j\limits^ \wedge + \mathop k\limits^ \wedge
And the given vectors are perpendicular to the vector i+j+k\mathop i\limits^ \wedge + \mathop j\limits^ \wedge + \mathop k\limits^ \wedge .
Now let a\mathop a\limits^ \wedge = i+j+2k\mathop i\limits^ \wedge + \mathop j\limits^ \wedge + 2\mathop k\limits^ \wedge , b\mathop b\limits^ \wedge = i+2j+k\mathop i\limits^ \wedge + 2\mathop j\limits^ \wedge + \mathop k\limits^ \wedge and c\mathop c\limits^ \wedge = i+j+k\mathop i\limits^ \wedge + \mathop j\limits^ \wedge + \mathop k\limits^ \wedge
Let the vector on the plane of a\mathop a\limits^ \wedge and b\mathop b\limits^ \wedge is:
r=λa+μb\mathop r\limits^ \wedge = \lambda \mathop a\limits^ \wedge + \mu \mathop b\limits^ \wedge
Now, substitute the vectors of a and b as
r=λ(i+j+2k)+μ(i+2j+k)\mathop r\limits^ \wedge = \lambda \left( {\mathop i\limits^ \wedge + \mathop j\limits^ \wedge + 2\mathop k\limits^ \wedge } \right) + \mu \left( {\mathop i\limits^ \wedge + 2\mathop j\limits^ \wedge + \mathop k\limits^ \wedge } \right)
r=(λ+μ)i+(λ+2μ)j+(2λ+μ)k\mathop r\limits^ \wedge = \left( {\lambda + \mu } \right)i + \left( {\lambda + 2\mu } \right)j + \left( {2\lambda + \mu } \right)k
Also,
rc=0\mathop r\limits^ \wedge \cdot \mathop c\limits^ \wedge = 0
\Rightarrow $$$$\left( {\lambda + \mu } \right) \cdot 1 + \left( {\lambda + 2\mu } \right) \cdot 1 + \left( {2\lambda + \mu } \right) \cdot 1 = 0
\Rightarrow $$$$4\lambda + 4\mu = 0
\Rightarrow $$$$\lambda + \mu = 0
Hence,
[rab]=0\left[ {\mathop r\limits^ \wedge \mathop a\limits^ \wedge \mathop b\limits^ \wedge } \right] = 0
Therefore, vectors ij\mathop i\limits^ \wedge - \mathop j\limits^ \wedge and j+k- \mathop j\limits^ \wedge + \mathop k\limits^ \wedge satisfies the given condition.

Hence, the answer is both option C and D.

Note: In this above question, we drew a figure of a triangle. Drawing a figure really helped to solve the question. While solving any trigonometric ratio related question, it is highly recommended to draw a diagram which will not only help in clearing the confusion but will also help in easily solving the question.