Solveeit Logo

Question

Mathematics Question on Vector Algebra

The vector projection of b on a , where a = 3i^\hat {i} + 2j^\hat {j} + 5k^\hat {k} and b = 7i^\hat {i} - 5j^\hat {j} - k^\hat {k} is

A

3(3i^+2j^+5k^)38\frac {3(3\hat i + 2\hat j + 5\hat k)}{\sqrt {38}}

B

9i^+6j^+15k^19\frac {9\hat i + 6\hat j + 15\hat k}{19}

C

3(3i^+2j^+5k^)38\frac {3(3\hat i + 2\hat j + 5\hat k)}{38}

D

6(3i^+2j^+5k^)38\frac {6(3\hat i + 2\hat j + 5\hat k)}{\sqrt {38}}

Answer

9i^+6j^+15k^19\frac {9\hat i + 6\hat j + 15\hat k}{19}

Explanation

Solution

To find the vector projection of b onto a:
proj(a, b) = b dot aa2\frac {b\ dot \ a}{|a|^2} x a
Given a = 3i^\hat {i} + 2j^\hat {j} + 5k^\hat {k} and b = 7i^\hat {i} - 5i^\hat {i} - k^\hat {k}
We can calculate the vector projection.First, let's find the dot product of b and a:
b dot a = (7 x 3) + (-5 x 2) + (-1 x 5) = 21 - 10 - 5 = 6.
Now calculate the magnitude of a:
|a| = (32)+(22)+(52)\sqrt{(3^2) + (2^2) + (5^2)}= 9+4+25\sqrt{9 + 4 + 25} = 38\sqrt{38}
Now we can substitute these values into the formula to find the vector projection:
proj(a, b) = b dot aa2\frac {b \ dot\ a }{|a|^2} x a
proj(a, b) = 6((38)2\frac {6}{(\sqrt{(38)^2}} x (3i^\hat i + 2j^\hat j + 5k^\hat k)
proj(a, b) = 638\frac {6}{38} x (3i^\hat {i} + 2j^\hat {j} + 5k^\hat k)
proj(a, b) = 319\frac {3}{19} x (3i^\hat {i} + 2j^\hat {j} + 5k^\hat k)
proj(a, b) = \frac {9}{19}$$\hat {i} + \frac {6}{19}$$\hat {j} + \frac {15}{19}$$\hat {k}
Therefore, the vector projection of b onto a is 9i^+6j^+15k^19\frac {9\hat i + 6\hat j + 15\hat k}{19}.