Solveeit Logo

Question

Question: The vector \(\overrightarrow {OA} \), where \(O\) is the origin is given by \(\overrightarrow {OA} =...

The vector OA\overrightarrow {OA} , where OO is the origin is given by OA=2i^+2j^\overrightarrow {OA} = 2\widehat i + 2\widehat j. Now it is rotated by 4545^\circ anticlockwise about OO. What will be the new vector?
1.22j^2\sqrt 2 \widehat j
2.2j^2\widehat j
3.2i^2\widehat i
4.22i^2\sqrt 2 \widehat i

Explanation

Solution

We will first find the angle that OA\overrightarrow {OA} makes with the xx - axis. Then we will rotate OA\overrightarrow {OA} anticlockwise about the origin and find the new angle. Finally, we will find the xx and yy components of the new vector and represent it in the form of a vector.

Formula used:
If OO is the origin and AA is any point such that the vector OA=xi^+yj^\overrightarrow {OA} = x\widehat i + y\widehat j, then OA=x2+y2\left| {\overrightarrow {OA} } \right| = \sqrt {{x^2} + {y^2}} .
If θ\theta is the angle that OA\overrightarrow {OA} makes with the xx - axis, then tanθ=yx\tan \theta = \dfrac{y}{x}.

Complete step-by-step answer:
It is given that OA=2i^+2j^\overrightarrow {OA} = 2\widehat i + 2\widehat j, where i^ and j^\widehat i{\text{ and }}\widehat j are unit vectors along x and yx{\text{ and }}y respectively.

Here, xx - component of OA\overrightarrow {OA} is 22 and yy - component of OA\overrightarrow {OA} is 22.
Let θ\theta be the angle that OA\overrightarrow {OA} makes with the xx - axis. Then,
\tan \theta = \dfrac{y}{x} \\\ \Rightarrow \tan \theta = \dfrac{2}{2} = 1 \\\
We know that tan45=1\tan 45^\circ = 1, so substituting this in above equation, we get
tanθ=tan45\Rightarrow \tan \theta = \tan 45^\circ
θ=45\Rightarrow \theta = 45^\circ
Now, let us rotate OA\overrightarrow {OA} anticlockwise about the origin by 4545^\circ . Let α\alpha be the angle that the new vector makes with the xx - axis.
We observe that
α=θ+45\alpha = \theta + 45^\circ
Substituting θ=45\theta = 45^\circ in the above equation, we get
\Rightarrow \alpha = 45^\circ + 45^\circ \\\ \Rightarrow \alpha = 90^\circ \\\
Let us now find the components of the new vector.
Substituting x=y=2x = y = 2 in the formula OA=x2+y2\left| {\overrightarrow {OA} } \right| = \sqrt {{x^2} + {y^2}} , we get
OA=22+22\left| {\overrightarrow {OA} } \right| = \sqrt {{2^2} + {2^2}}
Applying the exponent on the terms, we get
OA=8=22\Rightarrow \left| {\overrightarrow {OA} } \right| = \sqrt 8 = 2\sqrt 2
The xx - component of OA=OAcosαi^\overrightarrow {OA} = \left| {\overrightarrow {OA} } \right|\cos \alpha \widehat i
Substituting OA=22\left| {\overrightarrow {OA} } \right| = 2\sqrt 2 in the above equation, we get
OA=22cos90i^\overrightarrow {OA} = 2\sqrt 2 \cos 90^\circ \widehat i
Now substituting cos90=0\cos 90^\circ = 0 in the above equation, we get
OA=0i^\Rightarrow \overrightarrow {OA} = 0\widehat i
The yy - component of OA\overrightarrow {OA} =OAsinα j^ = \left| {\overrightarrow {OA} } \right|\sin \alpha {\text{ }}\widehat j
Substituting OA=22\left| {\overrightarrow {OA} } \right| = 2\sqrt 2 in the above equation, we get
OA=22sin90j^\overrightarrow {OA} = 2\sqrt 2 \sin 90^\circ \widehat j
Now substituting sin90=1\sin 90^\circ = 1 in the above equation, we get
OA=22j^\Rightarrow \overrightarrow {OA} = 2\sqrt 2 \widehat j
Hence, the new vector OA=0i^+22j^=22j^\overrightarrow {OA} = 0\widehat i + 2\sqrt 2 \widehat j = 2\sqrt 2 \widehat j.
Thus, option (1) is the correct option .

Note: If a vector OA\overrightarrow {OA} makes an angle θ\theta with the xx - axis, then the x and yx{\text{ and }}y components of OA\overrightarrow {OA} are given as OAcosθ\left| {\overrightarrow {OA} } \right|\cos \theta and OAsinθ\left| {\overrightarrow {OA} } \right|\sin \theta with unit vectors i^ and j^\widehat i{\text{ and }}\widehat j respectively. We have selected the position of OA\overrightarrow {OA} in the first quadrant since both x and yx{\text{ and }}y components are positive. We can also approach the above problem as follows: After rotating the vector by 4545^\circ , the new vector lies on the yy - axis. In this case, the xx - component of the new vector will be zero, which is what we obtained.