Solveeit Logo

Question

Mathematics Question on Vector basics

The vector equation of the symmetrical form of equation of straight line x53=y+47=z62\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2} is

A

r=(3i^+7j^+2k^)+μ(5i^+4j6k^)\vec{r} = \left(3\hat{i}+7\hat{j}+2\hat{k}\right)+\mu \left(5\hat{i}+4j-6\hat{k}\right)

B

r=(5i^+4j^6k^)+μ(3i^+7j+2k^)\vec{r} = \left(5\hat{i}+4\hat{j}-6\hat{k}\right)+\mu \left(3\hat{i}+7j+2\hat{k}\right)

C

r=(5i^4j^6k^)+μ(3i^7j2k^)\vec{r} = \left(5\hat{i}-4\hat{j}-6\hat{k}\right)+\mu \left(3\hat{i}-7j-2\hat{k}\right)

D

r=(5i^4j^+6k^)+μ(3i^+7j+2k^)\vec{r} = \left(5\hat{i}-4\hat{j}+6\hat{k}\right)+\mu \left(3\hat{i}+7j+2\hat{k}\right)

Answer

r=(5i^4j^+6k^)+μ(3i^+7j+2k^)\vec{r} = \left(5\hat{i}-4\hat{j}+6\hat{k}\right)+\mu \left(3\hat{i}+7j+2\hat{k}\right)

Explanation

Solution

x53=y+47=z62 \frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2} have vector form
=(x1i^+y1j^+z1k^)+λ(ai^+bj^+ck^)= \left(x_{1}\hat{i}+y_{1}\hat{j}+z_{1}\hat{k}\right)+\lambda\left(a\hat{i}+b\hat{j}+c\hat{k}\right)
Required equation in vector form is
r=(5i^4j^+6k^)+μ(3i^+7j+2k^)\vec{r} = \left(5\hat{i}-4\hat{j}+6\hat{k}\right)+\mu \left(3\hat{i}+7j+2\hat{k}\right)