Question
Mathematics Question on Equation of a Line in Space
The vector equation of the straight line 31−x=−2y+1=−13−z
A
r=(i^−j^+3k^)+λ(3i^+2j^−k^)
B
r=(i^−j^+3k^)+λ(3i^−2j^−k^)
C
r=(3i^−2j^−k^)+λ(i^−j^+3k^)
D
r=(3i^+2j^−k^)+λ(i^−j^+3k^)
Answer
r=(i^−j^+3k^)+λ(3i^+2j^−k^)
Explanation
Solution
Comparing 31−x=−2y+1=−13−z
with lx−x1=my−y1=nz−z1
⇒ x1=1,y1=−1,z1=3 and l=−3,m=−2,z=1
⇒ l=3,m=2,z=−1
∴ Vector equation of line is
r=a+λb
=(1,−1,3)+λ(+3,+2,−1)
=(i^−j^+3k^)+λ(+3i^+2j^−k^)
∴ r=(i^−j^+3k^)+λ(3i^+2j^−k^)