Solveeit Logo

Question

Mathematics Question on Equation of a Line in Space

The vector equation of the straight line 1x3=y+12=3z1\frac{1-x}{3}=\frac{y+1}{-2}\,=\frac{3-z}{-1}

A

r=(i^j^+3k^)+λ(3i^+2j^k^)\overrightarrow{r}=(\hat{i}-\hat{j}+3\hat{k})+\lambda (3\hat{i}+2\hat{j}-\hat{k})

B

r=(i^j^+3k^)+λ(3i^2j^k^)\overrightarrow{r}=(\hat{i}-\hat{j}+3\hat{k})+\lambda (3\hat{i}-2\hat{j}-\hat{k})

C

r=(3i^2j^k^)+λ(i^j^+3k^)\overrightarrow{r}=(3\hat{i}-2\hat{j}-\hat{k})+\lambda (\hat{i}-\hat{j}+3\hat{k})

D

r=(3i^+2j^k^)+λ(i^j^+3k^)\overrightarrow{r}=(3\hat{i}+2\hat{j}-\hat{k})+\lambda (\hat{i}-\hat{j}+3\hat{k})

Answer

r=(i^j^+3k^)+λ(3i^+2j^k^)\overrightarrow{r}=(\hat{i}-\hat{j}+3\hat{k})+\lambda (3\hat{i}+2\hat{j}-\hat{k})

Explanation

Solution

Comparing 1x3=y+12=3z1\frac{1-x}{3}=\frac{y+1}{-2}=\frac{3-z}{-1}
with xx1l=yy1m=zz1n\frac{x-{{x}_{1}}}{l}=\frac{y-{{y}_{1}}}{m}=\frac{z-{{z}_{1}}}{n}
\Rightarrow x1=1,y1=1,z1=3{{x}_{1}}=1,{{y}_{1}}=-1,{{z}_{1}}=3 and l=3,m=2,z=1l=-3,m=-2,z=1
\Rightarrow l=3,m=2,z=1l=3,m=2,z=-1
\therefore Vector equation of line is
r=a+λb\overrightarrow{r}=\overrightarrow{a}+\lambda \overrightarrow{b}
=(1,1,3)+λ(+3,+2,1)=(1,-1,3)+\lambda (+3,+2,-1)
=(i^j^+3k^)+λ(+3i^+2j^k^)=(\hat{i}-\hat{j}+3\hat{k})+\lambda (+3\hat{i}+2\hat{j}-\hat{k})
\therefore r=(i^j^+3k^)+λ(3i^+2j^k^)\overrightarrow{r}=(\hat{i}-\hat{j}+3\hat{k})+\lambda (3\hat{i}+2\hat{j}-\hat{k})