Solveeit Logo

Question

Question: The vector equation of the plane through the point \(2\mathbf{i} - \mathbf{j} - 4\mathbf{k}\) and pa...

The vector equation of the plane through the point 2ij4k2\mathbf{i} - \mathbf{j} - 4\mathbf{k} and parallel to the plane r.(4i12j3k)7=0\mathbf{r}.(4\mathbf{i} - 12\mathbf{j} - 3\mathbf{k}) - 7 = 0 is

A

r.(4i12j3k)=0\mathbf{r}.(4\mathbf{i} - 12\mathbf{j} - 3\mathbf{k}) = 0

B

r.(4i12j3k)=32\mathbf{r}.(4\mathbf{i} - 12\mathbf{j} - 3\mathbf{k}) = 32

C

r.(4i12j3k)=12\mathbf{r}.(4\mathbf{i} - 12\mathbf{j} - 3\mathbf{k}) = 12

D

None of these

Answer

r.(4i12j3k)=32\mathbf{r}.(4\mathbf{i} - 12\mathbf{j} - 3\mathbf{k}) = 32

Explanation

Solution

The equation of a plane parallel to the plane

r.(4i12j3k)7=0\mathbf{r}.(4\mathbf{i} - 12\mathbf{j} - 3\mathbf{k}) - 7 = 0is r.(4i12j3k)+λ=0\mathbf{r}.(4\mathbf{i} - 12\mathbf{j} - 3\mathbf{k}) + \lambda = 0.

This passes through2ij4k2\mathbf{i} - \mathbf{j} - 4\mathbf{k}.

Therefore,(2ij4k).(4i12j3k)+λ=0(2\mathbf{i} - \mathbf{j} - 4\mathbf{k}).(4\mathbf{i} - 12\mathbf{j} - 3\mathbf{k}) + \lambda = 0

8+12+12+λ=0λ=328 + 12 + 12 + \lambda = 0 \Rightarrow \lambda = - 32

So, the required plane is r.(4i12j3k)32=0\mathbf{r}.(4\mathbf{i} - 12\mathbf{j} - 3\mathbf{k}) - 32 = 0.