Solveeit Logo

Question

Question: The vector equation of the plane through the line of intersection of the planes \(x+y+z=1\) and \[2x...

The vector equation of the plane through the line of intersection of the planes x+y+z=1x+y+z=1 and 2x+3y+4z=52x+3y+4z=5 which is perpendicular to the plane xy+z=0x-y+z=0 is:
A. r×(i^+k^)+2=0\vec{r}\times \left( \hat{i}+\hat{k} \right)+2=0
B. r.(i^k^)2=0\vec{r}.\left( \hat{i}-\hat{k} \right)-2=0
C. r.(i^k^)+2=0\vec{r}.\left( \hat{i}-\hat{k} \right)+2=0
D. r×(i^k^)+2=0\vec{r}\times \left( \hat{i}-\hat{k} \right)+2=0

Explanation

Solution

We will first find the equation of a plane passing through the intersection of planes using the conventional formula, it will have λ\lambda as unknown. To find this value we will use the second part of the question and will use the condition a1a2+b1b2+c1c2=0{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0 for the normal vectors of both the planes. Finally we will convert the scalar equation into its vector form.

Complete step by step answer:
We know that Equation of a plane passing through the intersection of planes A1x+B1y+C1z=d1{{A}_{1}}x+{{B}_{1}}y+{{C}_{1}}z={{d}_{1}}and A2x+B2y+C2z=d2{{A}_{2}}x+{{B}_{2}}y+{{C}_{2}}z={{d}_{2}} is (A1x+B1y+C1zd1)+λ(A2x+B2y+C2zd2)=0 ........Equation 1.\left( {{A}_{1}}x+{{B}_{1}}y+{{C}_{1}}z-{{d}_{1}} \right)+\lambda \left( {{A}_{2}}x+{{B}_{2}}y+{{C}_{2}}z-{{d}_{2}} \right)=0\text{ }........\text{Equation 1}\text{.}
Now we have to take our first plane equation: x+y+z=1x+y+z=1 and compare it with our standard equation written above: A1x+B1y+C1z=d1{{A}_{1}}x+{{B}_{1}}y+{{C}_{1}}z={{d}_{1}} , to find out the values of A1,B1,C1{{A}_{1}},{{B}_{1}},{{C}_{1}} and d1{{d}_{1}}.
Now the plane equation can be written as follows,
x+y+z=11x+1y+1z=1x+y+z=1\Rightarrow 1x+1y+1z=1 , on comparing it with A1x+B1y+C1z=d1{{A}_{1}}x+{{B}_{1}}y+{{C}_{1}}z={{d}_{1}} we will get the following values:
A1=1,B1=1,C1=1,d1=1 ............. Equation 2.{{A}_{1}}=1,{{B}_{1}}=1,{{C}_{1}}=1,{{d}_{1}}=1\text{ }.............\text{ Equation 2}\text{.}
Similarly for the second equation of plane 2x+3y+4z=52x+3y+4z=5 and compare it with our standard equation written above: A2x+B2y+C2z=d2{{A}_{2}}x+{{B}_{2}}y+{{C}_{2}}z={{d}_{2}} , to find out the values of A2,B2,C2{{A}_{2}},{{B}_{2}},{{C}_{2}} and d2{{d}_{2}}.
Now on comparing it with A2x+B2y+C2z=d2{{A}_{2}}x+{{B}_{2}}y+{{C}_{2}}z={{d}_{2}} we will get the following values:
A2=2,B2=3,C2=4,d2=5............. Equation 3.{{A}_{2}}=2,{{B}_{2}}=3,{{C}_{2}}=4,{{d}_{2}}=5.............\text{ Equation 3}\text{.}
Now we have written the formula of equation of plane through the intersection of the plane in equation 1 as : (A1x+B1y+C1zd1)+λ(A2x+B2y+C2zd2)=0\left( {{A}_{1}}x+{{B}_{1}}y+{{C}_{1}}z-{{d}_{1}} \right)+\lambda \left( {{A}_{2}}x+{{B}_{2}}y+{{C}_{2}}z-{{d}_{2}} \right)=0 . Now we will put the values from equation 2: A1=1,B1=1,C1=1,d1=1{{A}_{1}}=1,{{B}_{1}}=1,{{C}_{1}}=1,{{d}_{1}}=1 and equation 3: A2=2,B2=3,C2=4,d2=5{{A}_{2}}=2,{{B}_{2}}=3,{{C}_{2}}=4,{{d}_{2}}=5 in this equation:
(1x+1y+1z1)+λ(2x+3y+4z5)=0 x+y+z1+2λx+3λy+4λz5λ=0 \begin{aligned} & \Rightarrow (1x+1y+1z-1)+\lambda \left( 2x+3y+4z-5 \right)=0 \\\ & \Rightarrow x+y+z-1+2\lambda x+3\lambda y+4\lambda z-5\lambda =0 \\\ \end{aligned}
Now, we will take the variables x, y, z out:
(1+2λ)x+(1+3λ)y+(1+4λ)z+(15λ)=0 ................Equation 4.\Rightarrow \left( 1+2\lambda \right)x+\left( 1+3\lambda \right)y+\left( 1+4\lambda \right)z+\left( -1-5\lambda \right)=0\text{ }................\text{Equation 4}\text{.}

Now as given in the question, the plane is also perpendicular to the plane xy+z=0x-y+z=0 . So, the normal vector N\vec{N} of the required plane will be perpendicular to the normal vector n\vec{n} of xy+z=0x-y+z=0.
We will now find N\vec{N} and n\vec{n} :
We have the required plane from Equation 4: (1+2λ)x+(1+3λ)y+(1+4λ)z+(15λ)=0\left( 1+2\lambda \right)x+\left( 1+3\lambda \right)y+\left( 1+4\lambda \right)z+\left( -1-5\lambda \right)=0 , Therefore, N=(1+2λ)i^+(1+3λ)j^+(1+4λ)k^\vec{N}=\left( 1+2\lambda \right)\hat{i}+\left( 1+3\lambda \right)\hat{j}+\left( 1+4\lambda \right)\hat{k}
Similarly, for the plane xy+z=0x-y+z=0 , n=1i^1j^+1k^\vec{n}=1\hat{i}-1\hat{j}+1\hat{k}.
Now we know that: Two lines with direction ratios a1,b1,c1{{a}_{1}},{{b}_{1}},{{c}_{1}} and a2,b2,c2{{a}_{2}},{{b}_{2}},{{c}_{2}} are perpendicular, if a1a2+b1b2+c1c2=0 Theory 1.{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0\Rightarrow \text{ Theory 1}\text{.}
We will find the direction ratios of N\vec{N} and n\vec{n}:
For N=(1+2λ)i^+(1+3λ)j^+(1+4λ)k^\vec{N}=\left( 1+2\lambda \right)\hat{i}+\left( 1+3\lambda \right)\hat{j}+\left( 1+4\lambda \right)\hat{k} : Direction Ratios will be 1+2λ,1+3λ,1+4λ1+2\lambda ,1+3\lambda ,1+4\lambda a1=1+2λ b1=1+3λ c1=1+4λ \begin{aligned} & {{a}_{1}}=1+2\lambda \\\ & {{b}_{1}}=1+3\lambda \\\ & {{c}_{1}}=1+4\lambda \\\ \end{aligned}
Similarly for n=1i^1j^+1k^\vec{n}=1\hat{i}-1\hat{j}+1\hat{k}, Direction ratios will be 1,1,11,-1,1 ; Therefore
a2=1 b2=1 c2=1 \begin{aligned} & {{a}_{2}}=1 \\\ & {{b}_{2}}=-1 \\\ & {{c}_{2}}=1 \\\ \end{aligned}

Now since N\vec{N} and n\vec{n} are perpendicular: a1a2+b1b2+c1c2=0{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0 , as we saw in Theory 1, now we will put the values of direction ratios in this equation:

& \Rightarrow {{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}=0 \\\ & \Rightarrow \left( \left( 1+2\lambda \right)\times 1 \right)+\left( \left( 1+3\lambda \right)\times \left( -1 \right) \right)+\left( \left( 1+4\lambda \right)\times 1 \right)=0 \\\ & \Rightarrow 1+2\lambda -1-3\lambda +1+4\lambda =0 \\\ & \Rightarrow 1+3\lambda =0 \\\ & \Rightarrow \lambda =\dfrac{-1}{3} \\\ \end{aligned}$$ Putting Value of $\lambda $ in equation 4, we have: $\begin{aligned} & \left( 1+2\lambda \right)x+\left( 1+3\lambda \right)y+\left( 1+4\lambda \right)z+\left( -1-5\lambda \right)=0 \\\ & \Rightarrow \left( 1+2\times \left( \dfrac{-1}{3} \right) \right)x+\left( 1+3\times \left( \dfrac{-1}{3} \right) \right)y+\left( 1+4\times \left( \dfrac{-1}{3} \right) \right)z+\left( -1-5\times \left( \dfrac{-1}{3} \right) \right)=0 \\\ & \Rightarrow \left( 1-\dfrac{2}{3} \right)x+\left( 1-1 \right)y+\left( 1-\dfrac{4}{3} \right)z+\left( -1+\dfrac{5}{3} \right)=0 \\\ & \Rightarrow \dfrac{1}{3}x-\dfrac{1}{3}z+\dfrac{2}{3}=0 \\\ & \Rightarrow \dfrac{1}{3}\left( x-z+2 \right)=0 \\\ & \Rightarrow x-z+2=0 \\\ \end{aligned}$ We have with us the equation of plane as : $x-z+2=0$ , now we will convert it into the vector form: Let $\overrightarrow{r}$ be the direction vector and therefore the vector equation becomes: $\overrightarrow{r}\left( \hat{i}-\hat{k} \right)+2=0$ **Hence the answer is Option C.** **Note:** Student might get confused in putting the values of the ${{A}_{1}},{{B}_{1}},{{C}_{1}}$ and ${{d}_{1}}$ and similarly other values as well. Chances of silly mistakes are more here as the values are very small and are used frequently. After finding the value of $\lambda $ , take care of the negative sign in the calculation.