Question
Mathematics Question on Vectors
The vector equation of the plane passing through the intersection of the planes r.(i^+j^+k^)=1 and r.(i^−2j^)=−2, and the point (1,0,2) is :
A
r.(i^+7j^+3k^)=37
B
r⋅(3i^+7j^+3k^)=7
C
r⋅(i^+7j^+3k^)=7
D
r.(i^−7j^+3k^)=37
Answer
r⋅(i^+7j^+3k^)=7
Explanation
Solution
r⋅(i^+j^+k^)=1 r⋅(i^−2j^)=−2 point (1,0,2) Eq n of plane r⋅(i^+j^+k^)−1+λr.(i^−2j^)+2=0 r⋅i^(1+λ)+j^(1−2λ)+k^(1)−1+2λ=0 Point i^+0j^+2k^=r ∴(i^+2k^)⋅i^(1+λ)+j^(1−2λ)+k^(1)−1+2λ=0 1+λ+2−1+2λ=0 λ=−32 ∴r⋅[i^(31)+j^(37)+k^] =37 r⋅[i^+7j^+3k^]=7