Solveeit Logo

Question

Mathematics Question on Vectors

The vector equation of the plane passing through the intersection of the planes r.(i^+j^+k^)=1\vec{ r } .(\hat{ i }+\hat{ j }+\hat{ k })=1 and r.(i^2j^)=2,\vec{ r } .(\hat{ i }-2 \hat{ j })=-2, and the point (1,0,2) is :

A

r.(i^+7j^+3k^)=73\vec{ r } .(\hat{ i }+7 \hat{ j }+3 \hat{ k })=\frac{7}{3}

B

r(3i^+7j^+3k^)=7\vec{ r } \cdot(3 \hat{ i }+7 \hat{ j }+3 \hat{ k })=7

C

r(i^+7j^+3k^)=7\vec{ r } \cdot(\hat{ i }+7 \hat{ j }+3 \hat{ k })=7

D

r.(i^7j^+3k^)=73\vec{ r } .(\hat{ i }-7 \hat{ j }+3 \hat{ k })=\frac{7}{3}

Answer

r(i^+7j^+3k^)=7\vec{ r } \cdot(\hat{ i }+7 \hat{ j }+3 \hat{ k })=7

Explanation

Solution

r(i^+j^+k^)=1\vec{ r } \cdot(\hat{ i }+\hat{ j }+\hat{ k })=1 r(i^2j^)=2\vec{ r } \cdot(\hat{ i }-2 \hat{ j })=-2 point (1,0,2) Eq n^{n} of plane r(i^+j^+k^)1+λr.(i^2j^)+2=0\vec{ r } \cdot(\hat{ i }+\hat{ j }+\hat{ k })-1+\lambda\\{ r .(\hat{ i }-2 \hat{ j })+2\\}=0 ri^(1+λ)+j^(12λ)+k^(1)1+2λ=0\vec{ r } \cdot\\{\hat{ i }(1+\lambda)+\hat{ j }(1-2 \lambda)+\hat{ k }(1)\\}-1+2 \lambda=0 Point i^+0j^+2k^=r\hat{ i }+0 \hat{ j }+2 \hat{ k }=\vec{ r } (i^+2k^)i^(1+λ)+j^(12λ)+k^(1)1+2λ=0\therefore(\hat{ i }+2 \hat{ k }) \cdot\\{\hat{ i }(1+\lambda)+\hat{ j }(1-2 \lambda)+\hat{ k }(1)\\} -1+2 \lambda=0 1+λ+21+2λ=01+\lambda+2-1+2 \lambda=0 λ=23\lambda=-\frac{2}{3} r[i^(13)+j^(73)+k^]\therefore\,\,\,\, \vec{ r } \cdot\left[\hat{ i }\left(\frac{1}{3}\right)+\hat{ j }\left(\frac{7}{3}\right)+\hat{ k}\right] =73=\frac{7}{3} r[i^+7j^+3k^]=7r\cdot[\hat{ i }+7 \hat{ j }+3 \hat{ k }]=7