Solveeit Logo

Question

Question: The vector equation of the plane passing through the origin and the line of intersection of the plan...

The vector equation of the plane passing through the origin and the line of intersection of the plane r.a=λ\mathbf{r}.\mathbf{a} = \lambda and r.b=μ\mathbf{r}.\mathbf{b} = \mu is

A

r.(λaμb)=0\mathbf{r}.(\lambda\mathbf{a} - \mu\mathbf{b}) = 0

B

r.(λbμa)=0\mathbf{r}.(\lambda\mathbf{b} - \mu\mathbf{a}) = 0

C

r.(λa+μb)=0\mathbf{r}.(\lambda\mathbf{a} + \mu\mathbf{b}) = 0

D

r.(λb+μa)=0\mathbf{r}.(\lambda\mathbf{b} + \mu\mathbf{a}) = 0

Answer

r.(λbμa)=0\mathbf{r}.(\lambda\mathbf{b} - \mu\mathbf{a}) = 0

Explanation

Solution

The equation of a plane through the line of intersection of the planes r.a=λ\mathbf{r}.\mathbf{a} = \lambda and r.b=μ\mathbf{r}.\mathbf{b} = \mu can be written as

(r.aλ)+k(r.bμ)=0(\mathbf{r}.\mathbf{a} - \lambda) + k(\mathbf{r}.\mathbf{b} - \mu) = 0 or r.(a+kb)=λ+kμ\mathbf{r}.(\mathbf{a} + k\mathbf{b}) = \lambda + k\mu .....(i)

This passes through the origin, therefore

0.(a+kb)=λ+μkk=λμ\mathbf{0}.(\mathbf{a} + k\mathbf{b}) = \lambda + \mu k \Rightarrow k = \frac{- \lambda}{\mu}

Putting the value of k in (i), we get the equation of the required plane as r.(μaλb)=06mu6mu6mur6mu.6mu(λbμa)=0\mathbf{r}.(\mu\mathbf{a} - \lambda\mathbf{b}) = 0\mspace{6mu} \Rightarrow \mspace{6mu}\mspace{6mu}\mathbf{r}\mspace{6mu}.\mspace{6mu}(\lambda\mathbf{b} - \mu\mathbf{a}) = 0.