Solveeit Logo

Question

Mathematics Question on Equation of a Line in Space

The vector equation of the line passing through the points (3,2,1)(3,2,1) and (2,1,3)(-2,1,3) is

A

r=3i^+2j^+k^+λ(5i^j^+2k^)\vec{r}=3\hat{i}+2\hat{j}+\hat{k}+\lambda (-5\hat{i}-\hat{j}+2\hat{k})

B

r=3i^+2j^+k^+λ(5i^+j^+k^)\vec{r}=3\hat{i}+2\hat{j}+\hat{k}+\lambda (-5\hat{i}+\hat{j}+\hat{k})

C

r=2i^+j^+3k^+λ(5i^+j^+2k^)\vec{r}=-2\hat{i}+\hat{j}+3\hat{k}+\lambda (5\hat{i}+\hat{j}+2\hat{k})

D

r=2i^+j^+k^+λ(5i^+j^+2k^)\vec{r}=-2\hat{i}+\hat{j}+\hat{k}+\lambda (5\hat{i}+\hat{j}+2\hat{k})

Answer

r=3i^+2j^+k^+λ(5i^j^+2k^)\vec{r}=3\hat{i}+2\hat{j}+\hat{k}+\lambda (-5\hat{i}-\hat{j}+2\hat{k})

Explanation

Solution

The correct option is(A): r=3i^+2j^+k^+λ(5i^j^+2k^)\vec{r}=3\hat{i}+2\hat{j}+\hat{k}+\lambda (-5\hat{i}-\hat{j}+2\hat{k})

The vector equation of a line passing through (3,2,1)(3,2,1) and (2,1,3)(-2,1,3) is r=3i^+2j^+k^+λ[(23)i^+(12)j^\vec{r}=3\hat{i}+2\hat{j}+\hat{k}+\lambda [(-2-3)\hat{i}+(1-2)\hat{j}
+(31)k^]+(3-1)\hat{k}] =3i^+2j^+k^+λ(5i^j^+2k^)=3\hat{i}+2\hat{j}+\hat{k}+\lambda (-5\hat{i}-\hat{j}+2\hat{k})