Solveeit Logo

Question

Mathematics Question on Vectors

The vector equation of the line joining the points (2, 1, 3) and (-2, 4, 1) is

A

r=2i^+j^+3k^+λ(4i^+3j^2k^)\overrightarrow{r} = 2\hat{i}+\hat{j}+3\hat{k}+\lambda(-4\hat{i}+3\hat{j}-2\hat{k})

B

r=2i^+j^+3k^+λ(4i^+3j^+2k^)\overrightarrow{r} = 2\hat{i}+\hat{j}+3\hat{k}+\lambda(4\hat{i}+3\hat{j}+2\hat{k})

C

r=2i^+j^+3k^+λ(4i^3j^2k^)\overrightarrow{r} = -2\hat{i}+\hat{j}+3\hat{k}+\lambda(-4\hat{i}-3\hat{j}-2\hat{k})

D

r=2i^+j^+3k^+λ(3i^4j^2k^)\overrightarrow{r} = 2\hat{i}+\hat{j}+3\hat{k}+\lambda(3\hat{i}-4\hat{j}-2\hat{k})

E

r=4i^+3j^2k^+λ(2i^+j^+3k^)\overrightarrow{r} = -4\hat{i}+3\hat{j}-2\hat{k}+\lambda(2\hat{i}+\hat{j}+3\hat{k})

Answer

r=2i^+j^+3k^+λ(4i^+3j^2k^)\overrightarrow{r} = 2\hat{i}+\hat{j}+3\hat{k}+\lambda(-4\hat{i}+3\hat{j}-2\hat{k})

Explanation

Solution

The correct option is (A): r=2i^+j^+3k^+λ(4i^+3j^2k^)\overrightarrow{r} = 2\hat{i}+\hat{j}+3\hat{k}+\lambda(-4\hat{i}+3\hat{j}-2\hat{k})