Solveeit Logo

Question

Question: The vector equation of a plane, which is at a distance of 8 unit from the origin and which is normal...

The vector equation of a plane, which is at a distance of 8 unit from the origin and which is normal to the vector 2i+j+2k,2\mathbf{i} + \mathbf{j} + 2\mathbf{k}, is

A

r.(2i+j+k)=24\mathbf{r}.(2\mathbf{i} + \mathbf{j} + \mathbf{k}) = 24

B

r.(2i+j+2k)=24\mathbf{r}.(2\mathbf{i} + \mathbf{j} + 2\mathbf{k}) = 24

C

r.(i+j+k)=24\mathbf{r}.(\mathbf{i} + \mathbf{j} + \mathbf{k}) = 24

D

None of these

Answer

r.(2i+j+2k)=24\mathbf{r}.(2\mathbf{i} + \mathbf{j} + 2\mathbf{k}) = 24

Explanation

Solution

Here d=8d = 8 and n=2i+j+2k)\mathbf{n} = 2\mathbf{i} + \mathbf{j} + 2\mathbf{k})

n^=nn=2i+j+2k4+1+4=23i+13j+23k\widehat{\mathbf{n}} = \frac{\mathbf{n}}{|\mathbf{n}|} = \frac{2\mathbf{i} + \mathbf{j} + 2\mathbf{k}}{\sqrt{4 + 1 + 4}} = \frac{2}{3}\mathbf{i} + \frac{1}{3}\mathbf{j} + \frac{2}{3}\mathbf{k}

Hence, the required equation of the plane is

r.(23i+13j+23k)=8\mathbf{r}.\left( \frac{2}{3}\mathbf{i} + \frac{1}{3}\mathbf{j} + \frac{2}{3}\mathbf{k} \right) = 8 or r.(2i+j+2k)=24\mathbf{r}.(2\mathbf{i} + \mathbf{j} + 2\mathbf{k}) = 24.