Solveeit Logo

Question

Question: The vector equation of a line passing through (2, –1, 1) and parallel to the line whose equation is ...

The vector equation of a line passing through (2, –1, 1) and parallel to the line whose equation is x32=y+17=z23\frac{x - 3}{2} = \frac{y + 1}{7} = \frac{z - 2}{- 3}is –

A

r=(2i^+7j^3k^)+λ(4i^+2j^+2k^)\overrightarrow{r} = (2\widehat{i} + 7\widehat{j} - 3\widehat{k}) + \lambda(4\widehat{i} + 2\widehat{j} + 2\widehat{k})

B

r=(2i^+7j^3k^)+λ(2i^j^+k^)\overrightarrow{r} = (2\widehat{i} + 7\widehat{j} - 3\widehat{k}) + \lambda(2\widehat{i} - \widehat{j} + \widehat{k})

C

r=(2i^j^+k^)+λ(2i^+7j^3k^)\overrightarrow{r} = (2\widehat{i} - \widehat{j} + \widehat{k}) + \lambda(2\widehat{i} + 7\widehat{j} - 3\widehat{k})

D

None of these

Answer

r=(2i^j^+k^)+λ(2i^+7j^3k^)\overrightarrow{r} = (2\widehat{i} - \widehat{j} + \widehat{k}) + \lambda(2\widehat{i} + 7\widehat{j} - 3\widehat{k})

Explanation

Solution

a=2i^j^+k^\overrightarrow{a} = 2\widehat{i} - \widehat{j} + \widehat{k} , b=2i^+7j^3k^\overrightarrow{b} = 2\widehat{i} + 7\widehat{j} - 3\widehat{k} apply, r=a+λb\overrightarrow{r} = \overrightarrow{a} + \lambda\overrightarrow{b}