Solveeit Logo

Question

Mathematics Question on Vector Algebra

The vector b=3j+4kb = 3j + 4k is to be written as the sum of a vector b1b_1 parallel to a=i+ja = i +j and a vector b2b_2 perpendicular to aa. Then b1b_1 is equal to

A

32(i+j)\frac{3}{2}\left(\vec {i}+\vec {j}\right)

B

23(i+j)\frac{2}{3}\left(\vec{i}+\vec{j}\right)

C

12(i+j)\frac{1}{2}\left(\vec {i}+\vec{j}\right)

D

13(i+j)\frac{1}{3}\left(\vec {i}+\vec {j}\right)

Answer

32(i+j)\frac{3}{2}\left(\vec {i}+\vec {j}\right)

Explanation

Solution

Since, b1ab _{1} \| a, therefore b1a(i+j)b _{1}-a( i + j )
b2=bb1=(3a)iaj+4kb _{2}= b - b _{1}=(3-a) i -a j +4 k
Also, b2a=0b _{2} \cdot a =0
(3a)aa=32\Rightarrow (3-a)-a \Rightarrow a=\frac{3}{2}
Hence, b1=32(i+j)b _{1}=\frac{3}{2}( i + j )