Solveeit Logo

Question

Question: The vector **a** coplanar with the vectors **i** and **j**, perpendicular to the vector \(\mathbf{b}...

The vector a coplanar with the vectors i and j, perpendicular to the vector b=4i3j+5k\mathbf{b} = 4\mathbf{i} - 3\mathbf{j} + 5\mathbf{k} such that a=b|\mathbf{a}| = |\mathbf{b}| is

A

2(3i+4j)\sqrt{2}(3\mathbf{i} + 4\mathbf{j}) or 2(3i+4j)- \sqrt{2}(3\mathbf{i} + 4\mathbf{j})

B

2(4i+3j)\sqrt{2}(4\mathbf{i} + 3\mathbf{j}) or 2(4i+3j)- \sqrt{2}(4\mathbf{i} + 3\mathbf{j})

C

3(4i+5j)\sqrt{3}(4\mathbf{i} + 5\mathbf{j}) or 3(4i+5j)- \sqrt{3}(4\mathbf{i} + 5\mathbf{j})

D

3(5i+4j)\sqrt{3}(5\mathbf{i} + 4\mathbf{j}) or 3(5i+4j)- \sqrt{3}(5\mathbf{i} + 4\mathbf{j})

Answer

2(3i+4j)\sqrt{2}(3\mathbf{i} + 4\mathbf{j}) or 2(3i+4j)- \sqrt{2}(3\mathbf{i} + 4\mathbf{j})

Explanation

Solution

Let a=xi+yj,\mathbf{a} = x\mathbf{i} + y\mathbf{j}, then a.b=0\mathbf{a}.\mathbf{b} = 0

4x3y=0x3=y4x=3λ,y=4λ,λR.\Rightarrow 4x - 3y = 0 \Rightarrow \frac{x}{3} = \frac{y}{4} \Rightarrow x = 3\lambda,y = 4\lambda,\lambda \in R.

Now a=bx2+y2=16+9+25|\mathbf{a}| = |\mathbf{b}| \Rightarrow x^{2} + y^{2} = 16 + 9 + 25

=9λ2+16λ2=50= 9\lambda^{2} + 16\lambda^{2} = 50

λ=±2x=±32,y=±42\Rightarrow \lambda = \pm \sqrt{2} \Rightarrow x = \pm 3\sqrt{2},y = \pm 4\sqrt{2}

Hence, a=±2(3i+4j)\mathbf{a} = \pm \sqrt{2}(3\mathbf{i} + 4\mathbf{j}).