Solveeit Logo

Question

Mathematics Question on Mean and Variance of Random variables

The variance σ2\sigma^2 of the data
Is _______.

Answer

Calculate sums:

fi=22,fixi=176,fixi2=2048.\sum f_i = 22, \quad \sum f_i x_i = 176, \quad \sum f_i x_i^2 = 2048.

Calculate the mean xˉ\bar{x}:

xˉ=fixifi=17622=8.\bar{x} = \frac{\sum f_i x_i}{\sum f_i} = \frac{176}{22} = 8.

Calculate the variance σ2\sigma^2:

σ2=1Nfixi2xˉ2,\sigma^2 = \frac{1}{N} \sum f_i x_i^2 - \bar{x}^2,

where N=fiN = \sum f_i.

Plugging in values:

σ2=122×2048(8)2=20482264.\sigma^2 = \frac{1}{22} \times 2048 - (8)^2 = \frac{2048}{22} - 64.

Compute:

204822=93.09090909andσ2=93.0909090964=29.09090909.\frac{2048}{22} = 93.09090909 \quad \text{and} \quad \sigma^2 = 93.09090909 - 64 = 29.09090909.

Thus, the variance is: 29.09090909