Solveeit Logo

Question

Question: The variance of the following probability distribution | x | 0 | 1 | 2 | | ---- |...

The variance of the following probability distribution

x012
P(x)9/163/81/16
Answer

3/8

Explanation

Solution

To find the variance of the probability distribution:

  1. Calculate the expected value (mean):

    E(x)=0916+138+2116=016+616+216=816=12E(x) = 0\cdot\frac{9}{16} + 1\cdot\frac{3}{8} + 2\cdot\frac{1}{16} = \frac{0}{16} + \frac{6}{16} + \frac{2}{16} = \frac{8}{16} = \frac{1}{2}
  2. Calculate the expected value of x2x^2:

    E(x2)=02916+1238+22116=0+616+416=1016=58E(x^2) = 0^2\cdot\frac{9}{16} + 1^2\cdot\frac{3}{8} + 2^2\cdot\frac{1}{16} = 0 + \frac{6}{16} + \frac{4}{16} = \frac{10}{16} = \frac{5}{8}
  3. Determine the variance:

    Variance=E(x2)[E(x)]2=58(12)2=5814=5828=38\text{Variance} = E(x^2) - [E(x)]^2 = \frac{5}{8} - \left(\frac{1}{2}\right)^2 = \frac{5}{8} - \frac{1}{4} = \frac{5}{8} - \frac{2}{8} = \frac{3}{8}

Therefore, the variance of the probability distribution is 38\frac{3}{8}.