Solveeit Logo

Question

Question: The variance of the first n natural numbers is...

The variance of the first n natural numbers is

A

n2112\frac{n^{2} - 1}{12}

B

n216\frac{n^{2} - 1}{6}

C

n2+16\frac{n^{2} + 1}{6}

D

n2+112\frac{n^{2} + 1}{12}

Answer

n2112\frac{n^{2} - 1}{12}

Explanation

Solution

Variance =(S.D.)2=1nΣx2(Σxn)2= (\text{S.D.})^{2} = \frac{1}{n}\Sigma x^{2} - \left( \frac{\Sigma x}{n} \right)^{2}, (6mu6muxˉ=Σxn)\left( \because\mspace{6mu}\mspace{6mu}\bar{x} = \frac{\Sigma x}{n} \right)

=n(n+1)6mu(2n+1)6n(n(n+1)2n)2=n2112= \frac{n(n + 1)\mspace{6mu}(2n + 1)}{6n} - \left( \frac{n(n + 1)}{2n} \right)^{2} = \frac{n^{2} - 1}{12}.