Solveeit Logo

Question

Question: The variance of the first \[50\] even natural number is?...

The variance of the first 5050 even natural number is?

Explanation

Solution

The even numbers are start with 22 and end with 100100
Use a variance formula for nn natural numbers because there is no individual formula for nn even natural numbers, by simplifying the even natural number or by taking out common terms in that, we get the nn natural number form.
Substitute it, then also sometime we may use the sum of nn natural numbers also, the sum of n2{n^2} natural numbers.
Hence, we get the final answer.

Formula used: The variance of nn natural number is σ2=(xi)2n(xin)2{\sigma ^2} = \dfrac{{\sum {{{({x_i})}^2}} }}{n} - {\left( {\dfrac{{\sum {{x_i}} }}{n}} \right)^2}
The sum of square of first n natural number is n(n+1)(2n+1)6\dfrac{{n(n + 1)(2n + 1)}}{6}
The sum of the first n natural number is n(n+1)2\dfrac{{n(n + 1)}}{2}

Complete step-by-step answer:
It is given that the set of 5050 even numbers is 2,4,6,8,10,12,.......90,92,94,96,98,1002,4,6,8,10,12,.......90,92,94,96,98,100
The formula for variance of nn natural number is
σ2=(xi)2n(xin)2....(1){\sigma ^2} = \dfrac{{\sum {{{({x_i})}^2}} }}{n} - {\left( {\dfrac{{\sum {{x_i}} }}{n}} \right)^2}....\left( 1 \right)
Given, n=50n = 50,
(xi)2=22+42+62+82+......+982+1002\sum {{{({x_i})}^2}} = {2^2} + {4^2} + {6^2} + {8^2} + ...... + {98^2} + {100^2}, that is the sum of the square of the first 5050 even natural number.
The sum of the first 5050 even natural number, we can write it as,
xi=2+4+6+8+.....+100\sum {{x_i} = 2 + 4 + 6 + 8 + ..... + 100}
Substitute the terms in equation (1)\left( 1 \right) we get,
σ2=(xi)250(xi50)2....(2){\sigma ^2} = \dfrac{{\sum {{{({x_i})}^2}} }}{{50}} - {\left( {\dfrac{{\sum {{x_i}} }}{{50}}} \right)^2}....\left( 2 \right)
Here we solve one by one,
First we take,
(xi)250=22+42+62+82+......+982+100250....(3)\sum {\dfrac{{{{({x_i})}^2}}}{{50}}} = \dfrac{{{2^2} + {4^2} + {6^2} + {8^2} + ...... + {{98}^2} + {{100}^2}}}{{50}}....\left( 3 \right),
We have to write it as rearrange the RHS, we get,

2=1×2 4=2×2 6=2×3 . . . 98=2×49 100=2×50  2 = 1 \times 2 \\\ 4 = 2 \times 2 \\\ 6 = 2 \times 3 \\\ . \\\ . \\\ . \\\ 98 = 2 \times 49 \\\ 100 = 2 \times 50 \\\

Substitute the above rearranged terms in equation (3)\left( 3 \right) we get,
(xi)250=(1×2)2+(2×2)2+(2×3)2+.......+(2×49)2+(2×50)250\sum {\dfrac{{{{({x_i})}^2}}}{{50}}} = \dfrac{{{{(1 \times 2)}^2} + {{\left( {2 \times 2} \right)}^2} + {{\left( {2 \times 3} \right)}^2} + ....... + {{\left( {2 \times 49} \right)}^2} + {{\left( {2 \times 50} \right)}^2}}}{{50}}
Partially split the squares,
(xi)250=12×22+22×22+22×32+.......+22×492+22×50250\sum {\dfrac{{{{({x_i})}^2}}}{{50}}} = \dfrac{{{1^2} \times {2^2} + {2^2} \times {2^2} + {2^2} \times {3^2} + ....... + {2^2} \times {{49}^2} + {2^2} \times {{50}^2}}}{{50}}
Take 22{2^2} has common in all terms,
(xi)250=22(12+22+32+.......+482+502)50\sum {\dfrac{{{{({x_i})}^2}}}{{50}}} = \dfrac{{{2^2}({1^2} + {2^2} + {3^2} + ....... + {{48}^2} + {{50}^2})}}{{50}}
On squaring the term, we get
(xi)250=4(12+22+32+.......+482+502)50\sum {\dfrac{{{{({x_i})}^2}}}{{50}}} = \dfrac{{4({1^2} + {2^2} + {3^2} + ....... + {{48}^2} + {{50}^2})}}{{50}}
(xi)2n=4(12+22+32+.......+482+502)50\dfrac{{\sum {{{({x_i})}^2}} }}{n} = \dfrac{{4({1^2} + {2^2} + {3^2} + ....... + {{48}^2} + {{50}^2})}}{{50}}
On dividing the terms we get,
(xi)2n=2(12+22+32+.......+482+502)25....(4)\dfrac{{\sum {{{({x_i})}^2}} }}{n} = \dfrac{{2({1^2} + {2^2} + {3^2} + ....... + {{48}^2} + {{50}^2})}}{{25}}....\left( 4 \right)
Now, we have to find
(12+22+32+.......+482+502)({1^2} + {2^2} + {3^2} + ....... + {48^2} + {50^2})
Here we use the formula for sum of the square of first n2{n^2},
n(n+1)(2n+1)6\dfrac{{n(n + 1)(2n + 1)}}{6}
Heren=50n = 50,
50(50+1)(2×50+1)6\dfrac{{50(50 + 1)(2 \times 50 + 1)}}{6}
On adding and multiplying the terms
50(51)(100+1)6\dfrac{{50(51)(100 + 1)}}{6}
On dividing the first terms with denominator
25(51)(100+1)3\dfrac{{25(51)(100 + 1)}}{3}
On dividing the second term with denominator,
25×17×10125 \times 17 \times 101
On multiplying the terms we get, 4292542925
(12+22+32+.......+482+502)=42925({1^2} + {2^2} + {3^2} + ....... + {48^2} + {50^2}) = 42925
Substitute (12+22+32+.......+482+502)({1^2} + {2^2} + {3^2} + ....... + {48^2} + {50^2})=4292542925 in (4)\left( 4 \right) we get,
(xi)2n=2(42925)25\dfrac{{\sum {{{({x_i})}^2}} }}{n} = \dfrac{{2\left( {42925} \right)}}{{25}}
On dividing the terms we get,
(xi)2n=2×1717\dfrac{{\sum {{{({x_i})}^2}} }}{n} = 2 \times 1717
Let us multiply,
(xi)2n=3434....(5)\dfrac{{\sum {{{({x_i})}^2}} }}{n} = 3434....\left( 5 \right)
From (2)\left( 2 \right) we take,
xin=2+4+6+....+10050....(6)\dfrac{{\sum {{x_i}} }}{n} = \dfrac{{2 + 4 + 6 + .... + 100}}{{50}}....\left( 6 \right)
Take
xi=2+4+6+...+100\sum {{x_i} = 2 + 4 + 6 + ... + 100}
We have to rearrange the RHS we get,
xi=2×1+2×2+2×3+....+2×50\sum {{x_i} = 2 \times 1} + 2 \times 2 + 2 \times 3 + .... + 2 \times 50
Take 22 has common in all terms
xi=2(1+2+3+....+50)\sum {{x_i} = 2(1} + 2 + 3 + .... + 50)
Now, we have to find (1+2+3.....+50)(1 + 2 + 3..... + 50)
Here we use the formula for the sum first nn natural numbers,
n(n+1)2\dfrac{{n(n + 1)}}{2}
Here n=50n = 50
50(50+1)2\dfrac{{50(50 + 1)}}{2}
On adding we get,
50×512\dfrac{{50 \times 51}}{2}
Let us divided the first number with the denominator we get,
25×5125 \times 51
On multiply
12751275
(1+2+3.....+50)(1 + 2 + 3..... + 50) = 12751275
Substitute (1+2+3.....+50)(1 + 2 + 3..... + 50)=12751275 in (6)\left( 6 \right)
xi50=2(1275)50\sum {\dfrac{{{x_i}}}{{50}} = \dfrac{{2\left( {1275} \right)}}{{50}}}
On multiplying the numerator term we get
xin=255050\dfrac{{\sum {{x_i}} }}{n} = \dfrac{{2550}}{{50}}
On dividing,
xin=51\dfrac{{\sum {{x_i}} }}{n} = 51
Taking square on both sides we get,
(xin)2=(51)2{\left( {\dfrac{{\sum {{x_i}} }}{n}} \right)^2} = {(51)^2}
On squaring the LHS,
(xin)2=2601....(7){\left( {\dfrac{{\sum {{x_i}} }}{n}} \right)^2} = 2601....\left( 7 \right)
Substitute (xi)2n=3434\dfrac{{\sum {{{({x_i})}^2}} }}{n} = 3434 and (xin)2=2601{\left( {\dfrac{{\sum {{x_i}} }}{n}} \right)^2} = 2601 in (1)\left( 1 \right)we get,
σ2=34342601{\sigma ^2} = 3434 - 2601
On subtracting
σ2=833{\sigma ^2} = 833
Hence, the variance of the first 5050 even natural number is 833833

Note: There is no individual formula for nn even natural number, so that we use nn natural number formula,
Followed by small simplification, we get the form to nn natural even number.
If we take square root for variance we get standard deviation for 5050 even natural numbers.