Solveeit Logo

Question

Mathematics Question on Variance and Standard Deviation

The variance of first n natural numbers is :

A

\cen2+112\ce{ \frac{n^2 + 1}{12}}

B

\ce(n+1)(2n+1)6\ce{ \frac{(n + 1)(2n + 1)}{6}}

C

\cen2n12\ce{ \frac{n^2 - n}{12}}

D

\cen2112\ce{ \frac{n^2 - 1}{12}}

Answer

\cen2112\ce{ \frac{n^2 - 1}{12}}

Explanation

Solution

We know that variance σ2=xi2n(xin)2\sigma^{2} = {\frac{\sum x_{i}^{2}}{n}}- \left( {\frac{\sum x_{i}}{n}}\right)^{2} First n natural numbers are: ? ? ? ? ? ? ? xi {x_{i}} ? ? ? x12 {x_{1}^{2}} ? ? ? ? ? ? ? 11 ? ? ? ? 121^2 ? ? ? ? ? ? ? 22 ? ? ? ? 222^2 ? ? ? ? ? ? ? 33 ? ? ? ? 323^2 ? ? ? ? ? ? ? 44 ? ? ? ? 424^2 ? ? ? ? ? ? ? 55 ? ? ? ? 525^2 ? ? ? ? ? ? ? \vdots ? ? ? ? \vdots ? ? ? ? ? ? ? nn ? ? ? ? n2n^2 xi2=n(n+1)(2n+1)6\therefore \:\:\:\: { \sum x_{i}^{2} = \frac{n (n +1)(2n + 1)}{6}} and xi=n(n+1)2 { \sum x_{i} = \frac{n (n +1)}{2}} σ2=xi2n(xin)2\sigma^{2}= \frac{\sum x_{i}^{2}}{n}- \left(\frac{\sum x_{i}}{n}\right)^{2} =n(n+1)(2n+1)6n[n(n+1)2n]2 = {\frac{n (n +1)(2n + 1)}{6n}} - \left[ {\frac{n(n + 1)}{2n} }\right]^2 =(2n2+3n+1)6(n+14)2= \frac{\left( {2n^{2} + 3n + 1}\right)}{6} -\left( {\frac{n + 1}{4}}\right)^{2} =2[2n2+3n+1]3(n2+1+2n)12= \frac{2[2n^2+3n+1]-3(n^2+1+2n)}{12} =4n2+6n+23n236n12=n2112= \frac{ {4n^{2} + 6n + 2 - 3n^{2 } - 3 - 6n} }{12} =\frac{ {n^{2}} - 1}{12}