Solveeit Logo

Question

Mathematics Question on Sets

The variance of first n even natural numbers is n214\frac{n^2 - 1}{4}. The sum of first n natural numbers is n(n+1)2\frac{n(n + 1)}{2} and the sum of squares of first n natural numbers is n(n+1)(2n+1)6\frac{n(n + 1)(2n +1)}{6}.

A

Statement-1 is true, Statement-2 is true Statement-2 is not a correct explanation for Statement-1

B

Statement-1 is true, Statement-2 is false

C

Statement-1 is false, Statement-2 is true

D

Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for statement -1

Answer

Statement-1 is false, Statement-2 is true

Explanation

Solution

The correct answer is C:Statement-1 is false, Statement-2 is true
Given that;
Sum of first ‘n’ even natural numbers
=2+4+6+.....+2n=2+4+6+.....+2n
=2(1+2+.....n)=2(1+2+.....n)
2(n+1)n2=n(n+1)\frac{2(n+1)n}{2}=n(n+1)
For the numbers 2, 4, 6, 8, ......., 2n
xˉ=2[n(n+1)]2n=(n+1)\bar{x} = \frac{2\left[n\left(n+1\right)\right]}{2n} =\left(n+1\right)
And Var=(xxˉ)22n=x2n(xˉ)2Var = \frac{\sum\left(x -\bar{x}\right)^{2}}{2n} = \frac{\sum x^{2}}{n} - \left(\bar{x}\right)^{2}
=4n2n(n+1)2=4n(n+1)(2n+1)6n(n+1)2= \frac{4\sum n^{2}}{n} - \left(n+1\right)^{2}= \frac{4n\left(n+1\right)\left(2n+1\right)}{6n} - \left(n+1\right)^{2}
=2(2n+1)(n+1)3(n+1)2=(n+1)[4n+23n33]= \frac{2\left(2n+1\right)\left(n+1\right)}{3} - \left(n+1\right)^{2}= \left(n+1\right) \left[\frac{4n+2-3n-3}{3} \right]
=(n+1)(n1)3=n213= \frac{\left(n+1\right)\left(n-1\right)}{3} = \frac{n^{2}-1}{3}
\therefore Statement-1 is false. Clearly, statement - 2 is true .
natural numbers