Solveeit Logo

Question

Chemistry Question on Solutions

The variance of 20 observations is 5. If each observation is multiplied by 2, then the new variance of the resulting observation is

A

23?52^3 ? 5

B

22?52^2 ? 5

C

2?52 ? 5

D

24?52^4 ? 5

Answer

22?52^2 ? 5

Explanation

Solution

Let the observations be x1,x2,....,x20x_1, x_2, ...., x_{20} and xˉ\bar{x} be their mean. Given that, variance = 5 and n = 20. We know that, Variance (σ)2=1ni=120(xixˉ)\left(\sigma\right)^{2}=\frac{1}{n} \displaystyle \sum_{i=1}^{20}(x_i-\bar{x}) i.e. 5=120i=120(xixˉ)25=\frac{1}{20}\displaystyle \sum_{i=1}^{20}(x_i-\bar{x})^2 or i=120(xixˉ)2=100...(i)\displaystyle \sum_{i=1}^{20}(x_i-\bar{x})^2=100\,...(i) If each observation is multiplied by 2 and the new resulting observations are yiy_i, then yi=2xiy_{i}=2x_{i} i.e., xi=12yix_{i}=\frac{1}{2}y_{i} Therefore, yˉ=1ni=120yi=120i=1202xi=2.120\bar{y}=\frac{1}{n}\displaystyle \sum_{i=1}^{20}y_i=\frac{1}{20}\displaystyle \sum_{i=1}^{20}2x_i=2.\frac{1}{20} i=120xi\displaystyle \sum_{i=1}^{20}x_i i.e., yˉ=2xˉ\bar{y}=2\bar{x} or xˉ12yˉ\bar{x}\frac{1}{2}\bar{y} On substituting the values of xix_i and xˉ\bar{x} in e (i), we get i=120\displaystyle \sum_{i=1}^{20} (12yi12yˉ)2=100\left(\frac{1}{2}y_{i}-\frac{1}{2}\bar{y}\right)^{^2}=100 i.e. i=120(yiyˉ)2=400\displaystyle \sum_{i=1}^{20}(y_i-\bar{y})^2=400 Thus, the variance of new observations =120×400=20=22×5=\frac{1}{20}\times400=20=2^{2}\times5