Solveeit Logo

Question

Question: The vapour density of a mixture containing \({\text{N}}{{\text{O}}_{\text{2}}}\) and \({{\text{N}}_{...

The vapour density of a mixture containing NO2{\text{N}}{{\text{O}}_{\text{2}}} and N2O4{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}} is 38.338.3 at 300 K300{\text{ K}}. The number of moles of NO2{\text{N}}{{\text{O}}_{\text{2}}} in 100 g100{\text{ g}} of the mixture is approximate:
A) 0.44
B) 4.4
C) 33.4
D) 3.34

Explanation

Solution

We are given that the total number of moles is 100. First calculate the molar mass of the mixture using the relation between vapour density and molar mass. Calculate the number of moles of each NO2{\text{N}}{{\text{O}}_{\text{2}}}, N2O4{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}} and the mixture of NO2{\text{N}}{{\text{O}}_{\text{2}}} and N2O4{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}}. Then calculate the mass of NO2{\text{N}}{{\text{O}}_{\text{2}}} from the number of moles.

Complete solution:
First we will calculate the molecular mass using the equation as follows:
Molecular mass=2×Vapour density{\text{Molecular mass}} = 2 \times {\text{Vapour density}}
We are given that the vapour density of a mixture containing NO2{\text{N}}{{\text{O}}_{\text{2}}} and N2O4{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}} is 38.338.3. Thus,
Molecular mass=2×38.3{\text{Molecular mass}} = 2 \times {\text{38}}{\text{.3}}
Molecular mass=76.6{\text{Molecular mass}} = 76.6
Thus, the molecular mass of a mixture containing NO2{\text{N}}{{\text{O}}_{\text{2}}} and N2O4{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}} is 76.676.6.
We are given that the mass of a mixture containing NO2{\text{N}}{{\text{O}}_{\text{2}}} and N2O4{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}} is 100 g100{\text{ g}}. Let the mass of NO2{\text{N}}{{\text{O}}_{\text{2}}} in the mixture be x gx{\text{ g}}. Thus,
Mass of N2O4=100x{\text{Mass of }}{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}} = 100 - x
Now, calculate the number of moles of NO2{\text{N}}{{\text{O}}_{\text{2}}}, N2O4{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}} and the mixture of NO2{\text{N}}{{\text{O}}_{\text{2}}} and N2O4{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}} using the equation as follows:
Number of moles=MassMolar mass{\text{Number of moles}} = \dfrac{{{\text{Mass}}}}{{{\text{Molar mass}}}}
The molar mass of NO2{\text{N}}{{\text{O}}_{\text{2}}} is 46 g/mol46{\text{ g/mol}}. Thus,
Number of moles of NO2=x46{\text{Number of moles of N}}{{\text{O}}_2} = \dfrac{x}{{{\text{46}}}}
The molar mass of N2O4{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}} is 92 g/mol92{\text{ g/mol}}. Thus,
Number of moles of N2O4=100x92{\text{Number of moles of }}{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}} = \dfrac{{{\text{100}} - x}}{{{\text{92}}}}
The molar mass of a mixture containing NO2{\text{N}}{{\text{O}}_{\text{2}}} and N2O4{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}} is 76.676.6. Thus,
Number of moles of mixture of NO2 and N2O4=10076{\text{Number of moles of mixture of N}}{{\text{O}}_2}{\text{ and }}{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}} = \dfrac{{100}}{{{\text{76}}}}
Thus,
x46+100x92=10076\dfrac{x}{{{\text{46}}}} + \dfrac{{{\text{100}} - x}}{{{\text{92}}}} = \dfrac{{100}}{{{\text{76}}}}
x=20.10 gx = 20.10{\text{ g}}
Thus, the mass of NO2{\text{N}}{{\text{O}}_{\text{2}}} in the mixture is 20.10 g20.10{\text{ g}}.
Calculate the number of moles of NO2{\text{N}}{{\text{O}}_{\text{2}}} as follows:
Number of moles of NO2=20.1046=0.44 mol{\text{Number of moles of N}}{{\text{O}}_2} = \dfrac{{20.10}}{{{\text{46}}}} = 0.44{\text{ mol}}
Thus, the number of moles of NO2{\text{N}}{{\text{O}}_{\text{2}}} in 100 g100{\text{ g}} of the mixture is 0.44.

Thus, the correct option is (A) 0.44.

Note: Vapour density is the density of vapours in relation to the density of hydrogen. Vapour density is mass of a certain volume of a substance divided by mass of the same volume of hydrogen. The relation between molar mass and density is a direct proportion

.